首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essential work of fracture (EWF) method has been used to study the relationship between molecular structure and thin film fracture toughness for three ductile polyesters at ambient temperature. The fracture toughness of PPT is of particular interest. Successful fracture characterisation of thin film polyesters has been achieved by the EWF method using double edge notched tension (DENT) specimens. The specific essential work of fracture, w e, for polyethylene terephthalate (PET), polypropylene terephthalate (PPT) and polybutylene terephthalate (PBT) films is found to be 35.54±2.56, 41.03±3.23 and 31.34±8.60 kJ m–2, respectively. Differential scanning calorimetry (DSC) has been employed to investigate the crystallinity of the polymers concerned and the effect of this on their EWF values.  相似文献   

2.
The objective of the study is to formulate exclusive block copolymer (BCP) nanocomposites by dispersing bcp end‐grafted nanoparticles (bcp‐g‐nps) of PMMA‐b‐PS‐g‐TiO2 within PS‐b‐PMMA matrix. PMMA‐b‐PS‐g‐TiO2 is synthesized using a “grafting‐to” approach and characterized by XPS and TGA to establish that the copolymer chains were bonded to NPs. Good dispersion of bcp‐g‐nps in PMMA and PS‐PMMA bcp films is observed, in contrast to poor dispersion in PS films. In PS‐PMMA films, the compatible and identical bcp nature of the end‐grafted polymer, and large NP size caused it to span across entire PS‐PMMA domains. Poor and good dispersion in PS and PMMA matrices, respectively, can be rationalized by the fact that NPs interactions are driven by the PMMA at the outer corona of the bcp‐g‐nps. Developing bcp‐g‐nps as a strategic route to preparation of highly dispersed high permittivity NPs like titanium dioxide (TiO2) in bcp matrix can have important ramifications for energy storage devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 468–478  相似文献   

3.
Summary: Binary symmetric diblock copolymer blends, that is, low‐molecular‐weight poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) and high‐molecular‐weight poly(styrene‐block‐methacrylate) (PS‐b‐PMA), self‐assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.

An atomic force microscopy image of the thin film obtained from the blend of low‐molecular‐weight PS‐b‐PMMA and high‐molecular‐weight PS‐b‐PMA. The regular array of nanoholes in the films surface is clearly visible.  相似文献   


4.
Commercial polydisperse atactic poly(methyl methacrylate) (PMMA) exhibits a decreased glass transition temperature (Tg) when the film thickness is less than ~60 nm, whereas more model atactic PMMA shows an increased Tg in thin films supported on clean silicon wafers. NMR indicates no difference in tacticity, so the divergent thin film behavior appears related to the relative distribution of molecular mass. Extraction of some low molecular weight PMMA components from the commercial sample results in a significant modification of the thin film Tg compared with the initial PMMA fraction. The extracted sample exhibits initially a slight decrease in Tg as the film thickness is reduced below ~60 nm, but then Tg appears to increase for films thinner than 20 nm. These results illustrate the sensitivity of polymer thin film properties to low‐molecular mass components and could explain some of the contradictory reports on the Tg of polymer thin films that exist in the literature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
Thermotropic POSS‐containing poly(methacrylate) with long alkyl chain tethered polyhedral oligomeric silsesquioxane (POSS) in the side chain and the block copolymers (PMMA‐b‐PMAC11POSS) were developed by through living anionic polymerization. The resulting polymers indicated a phase transition temperature at 112 °C from spherocrystal to isotropic phase. The POSS‐containing polymer segments tended to form matrix of microphase‐separated nanostructures in the bulk even in the very low volume fraction, for instance, PMMA cylindrical nanostructure was obtained by PMMA175b‐PMAC11POSS11 (?PMAC11POSS = 0.44). The control of thin film morphology was carried out by not only solvent annealing, but also thermal annealing, resulting in the formation of well‐ordered dot‐ and fingerprint‐type nanostructures. This is the first report in a series of POSS‐containing block polymers that are capable for thermal annealing to generate well‐ordered microphase‐separated nanostructures in thin films. The novel thermotropic POSS‐containing block copolymer offers a promising material for block copolymer lithography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Novel polyesters from 2,5‐furandicarboxylic acid or 2,5‐dimethyl‐furandicarboxylate and 2,3‐butanediol have been synthesized via bulk polycondensation catalyzed by titanium (IV) n‐butoxide, tin (IV) ethylhexanoate, or zirconium (IV) butoxide. The polymers were analyzed by size exclusion chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FTIR), matrix‐assisted laser ionization‐desorption time‐of‐flight mass spectrometry, electrospray ionization time‐of‐flight mass spectrometry, electrospray ionization quadruple time‐of‐flight mass spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Fully bio‐based polyesters with number average molecular weights ranging from 2 to 7 kg/mol were obtained which can be suitable for coating applications. The analysis of their thermal properties proved that these polyesters are thermally stable up to 270–300 °C, whereas their glass transition temperature (Tg) values were found between 70 and 110 °C. Furthermore, a material was prepared with a molecular weight of 13 kg/mol, with a Tg of 113 °C. This high Tg would make this material possibly suitable for hot‐fill applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
We report a novel strategy for incorporation of titanium dioxide (TiO2) particles into poly(methyl methacrylate) (PMMA) to exploit high refractive and transparent organic–inorganic hybrid materials. Formation of TiO2 particles of around 20 nm was conducted within hydrophilic core of block copolymer micelles of poly(methyl methacrylate‐block‐acrylic acid) (PMMA‐b‐PAA) in toluene via sol–gel process from titanium isopropoxide and hydrochloric acid. Subsequently, incorporation of TiO2 particles into PMMA matrix was carried out by casting toluene solution of TiO2 precursor‐loaded copolymer micelles, prepared from PMMA350b‐PAA93 and the precursor of mole ratio Ti4+/carboxyl 4.0, and PMMA. Hybrid films of TiO2/PMMA exhibited high transparency to achieve transmission over 87% at 500 nm at 30 wt % of TiO2 content. The refractive index of resulting hybrid films at 633 nm linearly increased with TiO2 content to attain 1.579 at 30 wt % TiO2, which was 0.1 higher than that of PMMA. Cross‐sectional transmission electron microscope images of TiO2/PMMA hybrid films showed existence of TiO2 clusters less than 100 nm, which were probably formed by aggregation or agglutination of TiO2 particles during a drying process. It was also observed that decomposition temperature of the hybrid films elevated with increasing TiO2 content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Structured soft‐core/hard‐shell hydrophobic latices form rigid and transparent films under ambient conditions without the need of coalescing aids. The studied films have a composite structure, with the majority of soft poly(n‐butyl acrylate) dispersed in a continuous poly(methyl methacrylate) (PMMA) matrix. The matrix is formed by thin latex shells brought into intimate contact by surface forces. Despite the weakness of the interfaces between adjacent shells, the films exhibit high yield stress and surprising ductility. These properties result from a very specific PMMA matrix structure built from PMMA ligaments with a thickness of a few nanometers. Under these conditions, PMMA appears to shear without damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 224–234, 2003  相似文献   

9.
The present article considers the coil‐to‐globule transition behavior of atactic and syndiotactic poly(methyl methacrylates), (PMMA) in their theta solvent, n‐butyl chloride (nBuCl). Changes in Rh in these polymers with temperature in dilute theta solutions were investigated by dynamic light scattering. The hydrodynamic size of atactic PMMA (a‐PMMA‐1) in nBuCl (Mw: 2.55 × 106 g/mol) decreases to 61% of that in the unperturbed state at 13.0°C. Atactic PMMA (a‐PMMA‐2) with higher molecular weight (Mw: 3.3 × 106 g/mol) shows higher contraction in the same theta solvent (αη = Rh(T)/Rh (θ) = 0.44) at a lower temperature, 7.25°C. Although syndiotactic PMMA (s‐PMMA) has lower molecular weight than that of atactic samples (Mw: 1.2 × 106), a comparable chain collapse was observed (αη = 0.63) at 9.0°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2253–2260, 1999  相似文献   

10.
A ternary miscible blend system comprising only crystallizable aryl polyesters [poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(butylene terephthalate)] was characterized with the criteria of thermal analyses, microscopy, and X‐ray characterizations. The reported ternary miscibility (in the quenched amorphous state of blends of the three aryl polyesters) was truly physical and under the condition of no chemical transesterifications; this justified that transesterification was not a necessary condition for miscibility in polyester blends in this case. This study further proposed and tested a novel concept of a new criterion for miscibility characterization for polymer blends of only crystallizable polymers. A single composition‐dependent cold‐crystallization‐temperature (Tcc) peak in blends of only semicrystalline polymers was taken as an indication of an intimate mixing state of miscibility. The theoretical background for establishing the single composition‐dependent Tcc peak as a valid miscibility criterion for crystallizable polymer blends was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2394–2404, 2003  相似文献   

11.
We have introduced a facile synthetic route for well‐defined A2B miktoarm star copolymer composed of regioregular poly(3‐hexylthiophene) and poly(methyl methacrylate) ((P3HT)2PMMA) by the combination of anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5‐tris(bromomethyl)benzene (PMMA‐(Br)2) by anionic polymerization, and two bromines attached to the end of the PMMA chains were replaced by azides (PMMA‐(N3)2). Also, monoethynyl‐capped P3HT was synthesized by Grignard metathesis polymerization and post‐end functionalization. Then, copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition click reaction between monoethynyl‐capped P3HT and PMMA‐(N3)2 was performed to synthesize (P3HT)2PMMA. We used a slightly excess amount of monoethynyl‐capped P3HT so that all of the azide groups at the end of the PMMA chains completely reacted with monoethynyl‐capped P3HT. After complete removal of unreacted monoethynyl‐capped P3HT by column chromatography, pure (P3HT)2PMMA with narrow molecular weight distribution (the polydispersity of 1.18) was obtained. The weight fraction of P3HT and the total molecular weight of (P3HT)2PMMA are 0.48 and 16,000, respectively. To investigate the effect of the chain architecture on optical property and thin‐film morphology, we synthesized two linear P3HT‐b‐PMMAs (P3HT‐b‐PMMA‐L and P3HT‐b‐PMMA‐H) with similar weight fraction of P3HT block (0.48 for P3HT‐b‐PMMA‐L and 0.45 for P3HT‐b‐PMMA‐H) but two different total molecular weights (7900 for P3HT‐b‐PMMA‐L and 15,300 for P3HT‐b‐PMMA‐H). UV–visible (UV–vis) absorption spectrum and the fibril width of (P3HT)2PMMA thin film were similar to those of P3HT‐b‐PMMA‐L thin film. However, UV–vis spectrum for P3HT‐b‐PMMA‐H thin film was red‐shifted and the fibril width of P3HT‐b‐PMMA‐H was much larger than that of (P3HT)2PMMA. This indicates that the π–π interaction between P3HT arms in (P3HT)2PMMA is strong enough to arrange two P3HT backbone chains in (P3HT)2PMMA to stack one by one along the nanofibril axis. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Aromatic polyesters of 3,5-di-tert-butyl-4-hydroxybenzoic acid and 3,5-diisopropyl-4-hydroxybenzoic acid were prepared. The polymers were found to be high-melting but largely insoluble in organic solvents. The polymer based on 3,5-di-tert-butyl-4-hydroxy-benzoic acid was not degraded to monomer by sulfuric acid. A number of new aromatic polyesters were also prepared. Several new monomers for aromatic polyesters were synthesized, including bis(2,5-di-tert-butyl-4-carbophenoxyphenyl)terephthalate, m- and p-phenylene bis(3,5-di-tert-butyl-4-hydroxybenzoate), bis(2,6-di-tert-butyl-4-chlorocarboxyphenyl)terephthalate, and m-phenylene bis(3,5-diisopropyl-4-hydroxybenzoate). An aromatic polyester prepared from bis(2,6-di-tert-butyl-4-chlorocarboxyphenyl) terephthalate and resorcinol had a ηinh (trichloroethylene) of 1.05 (0.5%, 30°C) and a possible melting point of 330°C (DSC). Tough, creasable films could be cast from trichloroethylene solution of this polymer. Attempts to observe or to trap the keto-ketene that might result when 3,5-di-tert-butyl-4-hydroxybenzoyl chloride is treated with base were unsuccessful.  相似文献   

13.
Phase separation of polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends was used as a means to segregate PS‐ or PMMA‐functionalized single‐walled carbon nanotubes (SWNTs) in thin films. Dilute solutions (5 wt % in THF) of 1:1 PS/PMMA blends containing the functionalized nanotubes were spin cast and annealed at 180 °C for 12 h. Two different polymer molecular weights were used (Mn = 8000 or Mn = 22,000), and were of approximately equivalent molecular weight to those attached to the surface of the nanotubes. Nanotube functionalization was accomplished using the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition, in which alkyne‐decorated nanotubes were coupled with azide‐terminated polymers, resulting in polymer‐SWNT conjugates that were soluble in THF. Characterization of the annealed films by scanning Raman spectroscopy, which utilized the unique Raman fingerprint of carbon nanotubes, enabled accurate mapping of the functionalized SWNTs within the films relative to the two phase‐separated polymers. It was found that nanotube localization within the phase‐separated polymer films was influenced by the type of polymer attached to the nanotube surface, as well as its molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 450–458, 2009  相似文献   

14.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

15.
A series of diblock copolymers of n‐pentyl methacrylate and methyl methacrylate (PPMA/PMMA BCP) with one or two terminal functional groups was prepared by sequential anionic polymerization of PMA and MMA using an allyl‐functionalized initiator and/or and end‐capping with allyl bromide. Allyl functional groups were successfully converted into OH groups by hydroboration. The morphology in bulk was examined by temperature‐dependent small‐angle X‐ray measurements (T‐SAXS) and transmission electron microscopy (TEM) showing that functional groups induced a weak change in d‐spacings L0 as well as in the thermal expansion behavior. T‐SAXS proved that the lamellar morphologies were stable over multiple heating/cooling cycles without order‐disorder transition (ODT) until 300 °C. While non‐functionalized BCP formed parallel lamellae morphologies, additional OH‐termination at the PMMA block forced in very thin films (ratio between film thickness and lamellar d‐spacing below 1) the generation of perpendicular lamellae morphology through the whole film thickness, as shown by Grazing‐incidence small‐angle X‐ray scattering experiments (GISAXS) measurements. Functionalized BCP were successfully used in thin films as templates for silica nanoparticles in an in‐situ sol–gel process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Two novel bio‐based diamines are synthesized through introduction of renewable 2,5‐furandicarboxylic acid (2,5‐FDCA), and the corresponding aromatic polyimides (PIs) are then prepared by these diamines with commercially available aromatic dianhydrides via two‐step polycondensation. The partially bio‐based PIs possess high glass transition temperatures (Tgs) in the range from 266 to 364 °C, high thermal stability of 5% weight loss temperatures (T5%s) over 420 °C in nitrogen and outstanding mechanical properties with tensile strengths of 79–138 MPa, tensile moduli of 2.5–5.4 GPa, and elongations at break of 3.0–12.3%. Some colorless PI films (PI‐1‐b and PI‐1‐c) with the transmittances at 450 nm over 85% are prepared. The overall properties of 2,5‐FDCA‐based PIs are comparable with petroleum‐based PI derived from isophthalic acid, displaying the potential for development of innovative bio‐based materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1058–1066  相似文献   

17.
Dendritic 2‐ and 4‐arm PMMA‐based star polymers with furan‐protected maleimide at their focal point, (PMMA)2n‐MI and (PMMA)4n‐MI were efficiently clicked with the peripheral anthracene functionalized multiarm star polymer, (α‐anthryl functionalized‐polystyrene)m‐poly(divinyl benzene) ((α‐anthryl‐PS)m‐polyDVB) through the Diels–Alder reaction resulting in corresponding multiarm star block copolymers: (PMMA)2n‐(PS)m‐polyDVB and (PMMA)4n‐(PS)m‐polyDVB, respectively. Molecular weights (Mw,TDGPC), hydrodynamic radius (Rh), and intrinsic viscosity (η) of the multiarm star polymers were determined using three‐detection GPC (TD‐GPC). The high efficiency of this methodology to obtain such sterically demanding macromolecular constructs was deduced using 1H‐NMR and UV–vis spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
The functionality of porous isotactic (it) poly(methyl methacrylate) (PMMA) thin films, which were previously developed by the selective extraction of syndiotactic (st) poly(methacrylic acid) (PMAA) from the it‐PMMA/st‐PMAA stereocomplex thin film on a substrate using the layer‐by‐layer assembly method was investigated after thermal treatment (70, 80, and 90 °C) in water for 4 h. Quartz crystal microbalance analysis and infrared spectra measurements revealed that the st‐PMAA incorporation ability of the porous it‐PMMA thin film decreased in order at 80 and 90 °C, while there was no decrease observed at 70 °C. X‐ray diffraction analysis also supported the thermal stability of the porosity at 70 °C, whereas two it‐PMMA crystalline peaks (2θ = 9° and 14°) were generated during heating at 90 °C. The loss of the functionality of the it‐PMMA thin film was thus shown to be due to crystallization, which was caused by the increase in polymer‐chain mobility during the heating process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3265–3270, 2010  相似文献   

19.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

20.
Development of renewable bio‐based unsaturated polyesters is undergoing a renaissance, typified by the use of itaconate and fumarate monomers. The electron‐deficient CC bond found on the corresponding polyesters allows convenient post‐polymerisation modification to give a wide range of polymer properties; this is notably effective for the addition of nucleophilic pendants. However, preservation of unsaturated functionality is blighted by two undesirable side‐reactions, branching/crosslinking and CC isomerisation. Herein, a tentative kinetic study of diethylamine addition to model itaconate and fumarate diesters highlights the significance of undesirable CC isomerisation. In particular, it shows that reversible isomerisation from itaconate to mesaconate (a poor Michael acceptor) is in direct competition with aza‐Michael addition, where the amine Michael donor acts as an isomerisation catalyst. We postulate that undesired formation of mesaconate is responsible for the long reaction times previously reported for itaconate polyester post‐polymerisation modification. This study illustrates the pressing need to overcome this issue of CC isomerisation to enhance post‐polymerisation modification of bio‐based unsaturated polyesters. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1935–1945  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号