首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
4.
The rate coefficient for the reaction CH3OH+OH was determined by means of a relative method in a simulation chamber under quasi‐real atmospheric conditions (294 K, 1 atm of air) and variable humidity or water concentration. Under these conditions, a quadratic dependence of the rate coefficient for the reaction CH3OH+OH on the water concentration was found. Thus the catalytic effect of water is not only important at low temperatures, but also at room temperature. The detailed mechanism responsible of the reaction acceleration is still unknown. However, this dependence should be included in the atmospheric global models since it is expected to be important in humid regions as in the tropics. Additionally, it could explain several differences regarding the global and local atmospheric concentration of methanol in tropical areas, for which many speculations about the sinks and sources of methanol have been reported.  相似文献   

5.
6.
7.
Recent reports [Jara‐Toro et al., Angew. Chem. Int. Ed. 2017 , 56, 2166 and PCCP 2018 , 20, 27885] suggest that the rate coefficient of OH reactions with alcohols would increase by up to two times in going from dry to high humidity. This finding would have an impact on the budget of alcohols in the atmosphere and it may explain differences in measured and modeled methanol concentrations. The results were based on a relative technique carried out in a small Teflon bag, which might suffer from wall reactions. The effect was reinvestigated using a direct fluorescence probe of OH radicals, and no catalytic effect of H2O could be found. Experiments in a Teflon bag were also carried out, but the results of Jara‐Toro et al. were not reproducible. Further theoretical calculations show that the water‐mediated reactions have negligible rates compared to the bare reaction and that even though water molecules can lower the barriers of reactions, they cannot make up for the entropy cost.  相似文献   

8.
9.
10.
Stable isotope ratio measurements have been used as a measure of a wide variety of processes, including solar system evolution, geological formational temperatures, tracking of atmospheric gas and aerosol chemical transformation, and is the only means by which past global temperatures may be determined over long time scales. Conventionally, isotope effects derive from differences of isotopically substituted molecules in isotope vibrational energy, bond strength, velocity, gravity, and evaporation/condensation. The variations in isotope ratio, such as 18O/16O (δ18O) and 17O/16O (δ17O) are dependent upon mass differences with δ17O/δ18O=0.5, due to the relative mass differences (1 amu vs. 2 amu). Relations that do not follow this are termed mass independent and are the focus of this Minireview. In chemical reactions such as ozone formation, a δ17O/δ18O=1 is observed. Physical chemical models capture most parameters but differ in basic approach and are reviewed. The mass independent effect is observed in atmospheric species and used to track their chemistry at the modern and ancient Earth, Mars, and the early solar system (meteorites).  相似文献   

11.
12.
13.
High‐level quantum‐chemical calculations have been performed to understand the key reactivity determinants of bimolecular reactions of Criegee intermediates and H2X (X=O, S, Se, and Te). Criegee intermediates are implicated as key intermediates in atmospheric, synthetic organic, and enzymatic chemistry. Generally, it is believed that the nature and location of substituents at the carbon of the Criegee intermediate play a key role in determing the reactivity. However, the present work suggests that it is not only the substitution of the Criegee intermediate, but the nature of the heteroatom in H2X that also plays a crucial role in determining the reactivity of the interaction between the Criegee intermediate and H2X. The barriers for the reactions of Criegee intermediates and H2X satisfy an inverse correlation with the bond strength of X−H in H2X, and a direct correlation with the first pKa of H2X. This heteroatom tuning causes a substantial barrier lowering of 8–11 kcal mol−1 in the Criegee reaction barrier in going from H2O to H2Te. An important implication of these results is that the reaction of the Criegee intermediate and H2S could be a source of thioaldehydes, which are important in plantery atmospheres and synthetic organic chemistry. By performing the reaction of Criegee intermediates and H2S under water or acid catalysis, thioladehydes could be detected in a hydrogen‐bonded complexed state, which is significantly more stable than their uncomplexed form. As a result, simpler aliphatic thioaldehydes could be selectively synthesized in the laboratory, which, otherwise, has been a significant synthetic challenge because of their ability to oligomerize.  相似文献   

14.
15.
Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn ‐ and anti ‐CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn ‐ and anti ‐CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre‐reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn ‐ and anti ‐CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.  相似文献   

16.
17.
18.
19.
Described is a novel, laser‐initiated radical trifluoromethylation for protein footprinting and its broad residue coverage. .CF3 reacts with 18 of the 20 common amino acids, including Gly, Ala, Ser, Thr, Asp, and Glu, which are relatively silent with regard to .OH. This new approach to footprinting is a bridge between trifluoromethylation in materials and medicinal chemistry and structural biology and biotechnology. Its application to a membrane protein and to myoglobin show that the approach is sensitive to protein conformational change and solvent accessibility.  相似文献   

20.
Ammonia is synthesized directly from water and N2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half‐cell for the NH3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half‐cell. A rate of ammonia formation of 2.2×10−3 g m−2 h−1 was obtained at room temperature and atmospheric pressure in a flow of N2, with stable behavior for at least 60 h of reaction, under an applied potential of −2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N2, making it more reactive towards hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号