首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To overcome the current limitations of chemodynamic therapy (CDT), a Mo2C‐derived polyoxometalate (POM) is readily synthesized as a new CDT agent. It permits synergistic chemodynamic and photothermal therapy operating in the second near‐infrared (NIR‐II) biological transparent window for deep tissue penetration. POM aggregated in an acidic tumor micro‐environment (TME) whereby enables specific tumor targeting. In addition to the strong ability to produce singlet oxygen (1O2) presumably via Russell mechanism, its excellent photothermal conversion enhances the CDT effect, offers additional tumor ablation modality, and permits NIR‐II photoacoustic imaging. Benefitting from the reversible redox property of molybdenum, the theranostics based on POM can escape from the antioxidant defense system. Moreover, combining the specific responsiveness to TME and localized laser irradiation, side‐effects shall be largely avoided.  相似文献   

2.
In this study, an organic semiconducting pro‐nanostimulant (OSPS) with a near‐infrared (NIR) photoactivatable immunotherapeutic action for synergetic cancer therapy is presented. OSPS comprises a semiconducting polymer nanoparticle (SPN) core and an immunostimulant conjugated through a singlet oxygen (1O2) cleavable linkers. Upon NIR laser irradiation, OSPS generates both heat and 1O2 to exert combinational phototherapy not only to ablate tumors but also to produce tumor‐associated antigens. More importantly, NIR irradiation triggers the cleavage of 1O2‐cleavable linkers, triggering the remote release of the immunostimulants from OSPS to modulate the immunosuppressive tumor microenvironment. Thus, the released tumor‐associated antigens in conjunction with activated immunostimulants induce a synergistic antitumor immune response after OSPS‐mediated phototherapy, resulting in the inhibited growth of both primary/distant tumors and lung metastasis in a mouse xenograft model, which is not observed for sole phototherapy.  相似文献   

3.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   

4.
Tumor hypoxia, the “Achilles’ heel” of current cancer therapies, is indispensable to drug resistance and poor therapeutic outcomes especially for radiotherapy. Here we propose an in situ catalytic oxygenation strategy in tumor using porphyrinic metal‐organic framework (MOF)‐gold nanoparticles (AuNPs) nanohybrid as a therapeutic platform to achieve O2‐evolving chemoradiotherapy. The AuNPs decorated on the surface of MOF effectively stabilize the nanocomposite and serve as radiosensitizers, whereas the MOF scaffold acts as a container to encapsulate chemotherapeutic drug doxorubicin. In vitro and in vivo studies verify that the catalase‐like nanohybrid significantly enhances the radiotherapy effect, alleviating tumor hypoxia and achieving synergistic anticancer efficacy. This hybrid nanomaterial remarkably suppresses the tumor growth with minimized systemic toxicity, opening new horizons for the next generation of theranostic nanomedicines.  相似文献   

5.
It is shown that UVO2+ ions can reside at UVIO22+ lattice sites during mild reduction and crystallization process under solvothermal conditions, yielding a complicated and rare mixed‐valent uranium phosphonate compound that simultaneously contains UIV, UV, and UVI. The presence of uranium with three oxidation states was confirmed by various characterization techniques, including X‐ray crystallography, X‐ray photoelectron, electron paramagnetic resonance, FTIR, UV/Vis‐NIR absorption, and synchrotron radiation X‐ray absorption spectroscopy, and magnetism measurements.  相似文献   

6.
Herein, the α‐Fe2O3@carboxyl‐functionalized yeast composite (α‐F@CFYC) was synthesized by direct oxidation of yeast with K2FeO4 and used as a novel adsorbent/heterogeneous Fenton catalyst for removal of methylene blue (MB). The obtained α‐F@CFYC was fully characterized by scanning electron microscopy, EDX, X‐ray diffraction analysis, Fourier‐transform infrared, thermogravimetry, and X‐ray photoelectron spectroscopy, respectively, and the corresponding results showed that α‐Fe2O3 nanoparticles were successfully obtained and deposited on yeast surface, as well as more functional groups were introduced/exposed on yeast surface. Furthermore, various influence parameters (eg, contact time, initial pH, and MB concentration) on the adsorption/catalysis ability of α‐F@CFYC for MB have been investigated in detail under ambient conditions. As a result, owing to the synergetic effect of the loaded α‐Fe2O3 and the introduced/exposed functional groups on yeast surface, the as‐obtained α‐F@CFYC exhibited high adsorption capacities and good catalysis degradation properties for MB.  相似文献   

7.
Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2‐succinato‐κ2O:O′){μ2‐tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine‐κ2N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O}n or {[Cu(suc)(ttpa)]·2H2O}n, (I), was synthesized by the hydrothermal method using tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine (ttpa) and succinate (suc2?), and characterized by IR, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4‐coordinated three‐dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation. A photocatalytic mechanism was proposed and confirmed.  相似文献   

8.
In the present work, a new protocol was introduced for the preparation of an efficient hybrid nanocatalyst ZnS‐ZnFe2O4 via the co‐precipitation method as well as its application in the synthesis of 2,4,5‐triaryl‐1H‐imidazoles derivatives starting from various aromatic aldehydes, benzil and ammonium acetate under ultrasonic irradiation in ethanol. ZnS‐ZnFe2O4 was characterized by Fourier transform infrared (FT‐IR) spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS) analysis, scanning electron microscopy (SEM) image, X‐ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. This method has advantages such as high efficiency of the heterogeneous catalyst, the use of environmentally‐friendly solvent, high yields, short reaction times and easy isolation of the products and chromatography‐free purification. Our outcomes illustrated that the present nanocatalyst with nearly spherical and Cauliflower‐like morphology and average particle size of 36 nm could be applied as an effective and magnetically recyclable catalyst without any significant decreasing of activity. Furthermore, the synergic effect of bimetallic Lewis acids was studied for the synthesis of imidazole derivatives.  相似文献   

9.
The use of X‐rays instead of UV/Vis light to trigger photodynamic therapy, named X‐ray inducible photodynamic therapy, holds tremendous promise due to a high penetration capacity in tissues and is worthy of in‐depth study. In this study, a novel multifunctional nanoagent based on Merocyanine 540‐coupled Gd2(WO4)3:Tb nanoscintillators and the vitalization of its abilities for dual‐modal computed tomography and the magnetic‐resonance‐imaging‐guided synergistic radio‐/X‐ray inducible photodynamic therapy of tumors is reported. Synergistic therapies show a higher tumor growth inhibition efficiency at a lower X‐ray dose than radiotherapy alone. Through this proof‐of‐concept work, a way to tactfully understand and utilize nanoscintillators for cancer theranostics is shown.  相似文献   

10.
During XPS analysis, the soft X‐ray‐induced reduction of metals such as Cr(VI) and Ce(IV) in oxides has been reported in the literature and some mechanisms have been proposed to explain this phenomenon. The reduction of U(VI) by the beam during X‐ray Photoelectron Spectroscopy has been already reported in the literature but only for U(VI) sorbed or precipitated onto solids with reducing properties (as micas or pyrites) for whose Fe(II) can also induce the reduction of U(VI), or onto TiO2 whose the photocatalytic properties are well known. The objective of this paper is to investigate the effects of X‐ray beam on U(VI) bulk compounds (UO3, UO2(OH)2, (UO2)2SiO4, UO2(CH3COO)2 and UO2C2O4). Successive U4f, U5f, C1s XPS spectra were recorded and compared as a function of the irradiation time. The XPS photoreduction of U(VI) into U(IV) is only observed for uranyl compounds containing organic matter (uranyl acetate and uranyl oxalate). Considering the evolution of the C1s signal during the X‐ray irradiation, a significant decrease of the C ? O component simultaneously to the U(VI) reduction is observed, which suggests a desorption of CO or other volatile organic products from the solid surface. All these results on U(VI) bulk compounds indicate the important role of organic carbon species in the photoreduction process and to explain these observations, a photoreduction mechanism has been suggested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this research, a solvent‐free four‐component one‐pot reaction of phenyl isothiocyanate, phenylacetylene, various kinds of aldehydes, and amines was interpreted to obtain the desired five‐membered heterocycles named thiazolidin‐2‐imines. The promotor of this transformation is a novel magnetite‐based multilayered inorganic–bioorganic nanohybrid prepared via embedding glutamic acid on the magnetized silica followed by anchoring Cu (II) [nano Fe3O4‐SiO2@Glu‐Cu (II)]. The newly synthesized nanostructure is characterized through Fourier‐transform infrared (FT‐IR), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDAX), transmission electron microscopy (TEM), X‐ray fluorescence (XRF), thermogravimetric analysis or derivative thermogravimetric (TGA/DTG), vibrating sample magnetometer (VSM), X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) techniques. This protocol is a straightforward one‐step procedure to obtain thiazolidin‐2‐imines without requirement to propargylamines or imines as substrates. In addition, easy work‐up procedure, high yields of products, absence of organic solvents in the reaction media, recovery and reusability of nano Fe3O4‐SiO2@Glu‐Cu ( II) to promote the reaction at least for three runs without activity lost, simple separation of the catalyst from reaction mixture via an external magnet, and regioselectivity of the method are some highlighted aspects of the approach.  相似文献   

12.
The X‐ray structure of 1,2,4,5‐tetra­hydroxy­benzene (benzene‐1,2,4,5‐tetrol) monohydrate, C6H6O4·H2O, (I), reveals columns of 1,2,4,5‐tetra­hydroxy­benzene parallel to the b axis that are separated by 3.364 (12) and 3.453 (11) Å. Molecules in adjacent columns are tilted relative to each other by 27.78 (8)°. Water mol­ecules fill the channels between the columns and are involved in hydrogen‐bonding interactions with the 1,2,4,5‐tetra­hydroxy­benzene mol­ecules. The crystal structure of the adduct 1,2,4,5‐tetra­hydroxy­benzene–2,5‐di­hydroxy‐1,4‐benzo­quinone (1/1), C6H6O4·C6H4O4, (II), reveals alternating mol­ecules of 1,2,4,5‐tetra­hydroxy­benzene and 2,5‐di­hydroxy‐1,4‐benzo­quinone (both lying on inversion centers), and a zigzag hydrogen‐bonded network connecting mol­ecules in three dimensions. For compound (II), the conventional X‐ray determination, (IIa), is in very good agreement with the synchrotron X‐ray determination, (IIb). When differences in data collection temperatures are taken into account, even the displacement parameters are in very good agreement.  相似文献   

13.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

14.
The conformation of the crystal of 17β‐ethoxy‐3‐methoxy‐8‐iso­estra‐1,3,5(10)‐triene, C21H30O2, (I), has been established and compared with the molecular structure of a typical steroid estrogen 8‐iso‐analogue, (II). Calculations of distances separating some of the H‐atom pairs in (I) and (II) by molecular‐mechanical and semi‐empirical methods revealed the similarity of the values to the H⃛H distances obtained from X‐ray analysis.  相似文献   

15.
A nano‐crystalline In2O3 was synthesized using calcinations methods and was used as a photocatalyst to degrade sulfan blue (SB) dye. In addition, this study addresses the conditions of the degradation and the factors that influenced the catalysis. In2O3 was prepared by calcining In(OH)3 at heat ranges of 100–700 °C for 24 h. The In2O3 was characterized using field emission scanning electron microscopy (FE‐SEM), an X‐ray diffractometer (XRD), thermogravimetric analysis (TGA), and high‐resolution X‐ray photoelectron spectroscopy (HR‐XPS). The activities of these samples were tested for the photocatalytic degradation of SB dye. The results indicated that the In(OH)3 that was calcined at 300 °C for 24 h had the best performance.  相似文献   

16.
Photodynamic therapy (PDT) holds great promise for cancer therapy; however, its efficacy is often compromised by tumor hypoxia. Herein, we report the synthesis of a semiconducting polymer nanoprodrug (SPNpd) that not only efficiently generates singlet oxygen (1O2) under NIR photoirradiation but also specifically activates its chemotherapeutic action in hypoxic tumor microenvironment. SPNpd is self‐assembled from a amphiphilic polymer brush, which comprises a light‐responsive photodynamic backbone grafted with poly(ethylene glycol) and conjugated with a chemodrug through hypoxia‐cleavable linkers. The well‐defined and compact nanostructure of SPNpd (30 nm) enables accumulation in the tumor of living mice. Owing to these features, SPNpd exerts synergistic photodynamic and chemo‐therapy, and effectively inhibits tumor growth in a xenograft tumor mouse model. This study represents the first hypoxia‐activatable phototherapeutic polymeric prodrug system with a high potential for cancer therapy.  相似文献   

17.
A combined synchrotron X‐ray and density functional theory (DFT) study on the structure of a Jäger‐type N2O2 chelate complex was carried out. The ethoxy‐substituted bis(3‐oxo‐enaminato)cobalt(II) complex ( 1 ) was an original sample from the laboratory of the late Professor Ernst‐G. Jäger (University of Jena, Germany). Single‐crystal X‐ray analysis revealed essentially flat molecules of 1 , which are unsolvated and coordinatively unsaturated. The DFT calculations on the isolated molecule predict a planar structure for the non‐hydrogen atoms, which is a local minimum on the energy surface. The crystal packing is achieved through off‐set stacking (staircase arrangement), resulting in a herringbone pattern in the space group P212121. The structure of 1 is compared to known structures of related bis(3‐oxo‐enaminato)cobalt(II) complexes ( 2 – 4 ). Original bulk material of 1 was investigated by scanning electron microscopy (SEM), powder X‐ray diffraction (PXRD), melting point determination, and infrared (IR) spectroscopy.  相似文献   

18.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

19.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

20.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号