首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches.  相似文献   

2.
Paralytic shellfish toxins (PSTs) are produced by marine and freshwater microalgae and accumulate in shellfish including mussels, oysters, and scallops, causing possible fatalities when inadvertently consumed. Monitoring of PST content of shellfish is therefore important for food safety, with currently approved methods based on HPLC, using pre‐ or postcolumn oxidation for fluorescence detection (HPLC‐FLD). CE is an attractive alternative for screening and detection of PSTs as it is compatible with miniaturization and could be implemented in portable instrumentation for on‐site monitoring. In this study, CE methods were developed for C4D, FLD, UV absorption detection, and MS—making this first report of C4D and FLD for PSTs detection. Because most oxidized toxins are neutral, MEKC was used in combination with FLD. The developed CZE‐UV and CZE‐C4D methods provide better resolution, selectivity, and separation efficiency compared to CZE‐MS and MEKC‐FLD. The sensitivity of the CZE‐C4D and MEKC‐FLD methods was superior to UV and MS, with LOD values ranging from 140 to 715 ng/mL for CZE‐C4D and 60.9 to 104 ng/mL for MEKC‐FLD. With the regulatory limit for shellfish samples of 800 ng/mL, the CZE‐C4D and MEKC‐FLD methods were evaluated for the screening and detection of PSTs in shellfish samples. While the CZE‐C4D method suffered from significant interferences from the shellfish matrix, MEKC‐FLD was successfully used for PST screening of a periodate‐oxidized mussel sample, with results confirmed by HPLC‐FLD. This confirms the potential of MEKC‐FLD for screening of PSTs in shellfish samples.  相似文献   

3.
One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two‐dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one‐dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Alkaloids from plants of the genus Erythrina display important biological activities, including anxiolytic action. Characterization of these alkaloids by mass spectrometry (MS) has contributed to the construction of a spectral library, has improved understanding of their structures and has supported the proposal of fragmentation mechanisms in light of density functional calculations. In this study, we have used low‐resolution and high‐resolution MSn analyses to investigate the fragmentation patterns of erythrinian alkaloids; we have employed the B3LYP/6‐31+G(d,p) model to obtain their reactive sites. To suggest the fragmentation mechanism of these alkaloids, we have studied their protonation sites by density functional calculation, and we have obtained their molecular electrostatic potential map and their gas‐phase basicity values. These analyses have indicated the most basic sites on the basis of the proton affinities of the nitrogen and oxygen atoms. The protonated molecules were generated by two major fragmentations, namely, neutral loss of CH3OH followed by elimination of H2O. High‐resolution analysis confirmed elimination of NH3 by comparison with the losses of H2 and •CH3. NH3 was eliminated from compounds that did not bear a substituent on ring C. The benzylic carbocation initiated the dissociation mechanism, and the first reaction involved charge transfer from a lone pair of electrons in the oxygen atoms. The second reaction consisted of ring contraction with loss of a CO molecule. The presence of hydroxy and epoxy groups could change the intensity or the occurrence of the fragmentation pathways. Given that erythrinian alkaloids are applied in therapeutics and are promising leads for the development of new drugs, the present results could aid identification of several analogues of these alkaloids in biological samples and advance pharmacokinetic studies of new plant derivatives based on MSn and MS/MS analyses. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Five new C19 diterpene alkaloids, leucanthumsines A ( 1 ), B ( 2 ), C ( 3 ), D ( 4 ), and E ( 5 ), were isolated from the Chinese medicinal herb Aconitum sungpanense var. leucanthum, together with the known C19 diterpene alkaloids pseudaconine, neoline, 1‐O‐methyldelphisine, crassicaudine, chasmanine, talatisamine, indaconitine, ezochansmanine, and leueantine D. The structures of these new alkaloids were elucidated by HR‐MS and advanced NMR methods, including 1H‐ and 13C‐NMR (DEPT), 1H,1H‐COSY, HMQC, and HMBC experiments.  相似文献   

6.
A flexible skin‐mounted microfluidic potentiometric device for simultaneous electrochemical monitoring of sodium and potassium in sweat is presented. The wearable device allows efficient natural sweat pumping to the potentiometric detection chamber, containing solid‐contact ion‐selective Na+ and K+ electrodes, during exercise activity. The fabricated microchip electrolyte‐sensing device displays good analytical performance and addresses sweat mixing and carry‐over issues of early epidermal potentiometric sensors. Such soft skin‐worn microchip platform integrates potentiometric measurement, microfluidic technologies with flexible electronics for real‐time wireless data transmission to mobile devices. The new fully integrated microfluidic electrolyte‐detection device paves the way for practical fitness and health monitoring applications.  相似文献   

7.
Electrokinetic supercharging (EKS) is defined as a technique that combines electrokinetic sample injection with transient ITP. Quantitative repeatability of EKS‐CZE and the other CE methods using electrokinetic sample injection process is usually inferior in comparison with the CE methods using hydrodynamic or hydrostatic injection. This is due to some effects, such as the temperature change and the convection of the sample solution in the reservoir, as well as the change of the distance between an electrode and a capillary end (Dec). In particular, we have found that the Dec change might most seriously affect the repeatability, especially when the electrode is a thin Pt wire that could be unintentionally bent during sampling. By using a Teflon spacer to fix Dec to 1.1 mm, the RSD of peak area (n=5) was decreased from 20 to 3.4% in EKS‐CZE for several metal cations. This Dec dependence of the sample amount injected was supported by computer simulation using CFD‐ACE+ software. The improved repeatability (down to 5.1% at n=5, averaged RSD for Co2+, Li+, Ni2+, Zn2+ and Pb2+) was also experimentally attained by increasing the Dec to ca. 20 mm, which was also effective to obtain high sensitivity. Since the temperature and the convection effects on the repeatability are comparatively small in a proper laboratory environment, these effects were estimated from the EKS‐CZE experiments using conditions such as warming and agitating the sample solution during EKS process. Finally, EKS‐CZE was applied to the detection of ions from atmospheric electrolytes in high‐purity water exposed to ambient air for 2 h. The microgram per liter levels of anions (chloride, sulfate, nitrate, formate, acetate and lactate) and cations (ammonium, calcium, sodium and magnesium) could be detected using conventional UV detector.  相似文献   

8.
Niu L  Xie Z  Cai T  Wu P  Xue P  Chen X  Wu Z  Ito Y  Li F  Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses.  相似文献   

9.
Two in‐line enrichment procedures (large volume sample stacking (LVSS) and field amplified sample injection (FASI)) have been evaluated for the CZE analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal polarity using 20 mM acetic acid–ammonium acetate (pH 5.5) containing 20% ACN as BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) of a water plug followed by 25 s electrokinetic injection (?10 kV) of the sample, and 200 mM formic acid–ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear calibration curves (r2>0.992), limit of detection on standards prepared in Milli‐Q water (49.1–200 μg/L for LVSS and 4.2–48 μg/L for FASI), and both run‐to‐run and day‐to‐day precisions (RSD values up to 15.8% for concentration) were established. Due to the higher sensitive enhancement (up to 310‐fold) achieved with FASI‐CZE, this method was selected for the analysis of HAAs in drinking water. However, for an optimal FASI application sample salinity was removed by SPE using Oasis WAX cartridges. With SPE‐FASI‐CZE, method detection limits in the range 0.05–0.8 μg/L were obtained, with recoveries, in general, higher than 90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE‐FASI‐CZE method was evaluated by analyzing drinking tap water from Barcelona where seven HAAs were found at concentration levels between 3 and 13 μg/L.  相似文献   

10.
Precise measurement of low enrichment of stable isotope labeled amino‐acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L‐[ring‐13C6]phenylalanine and a bolus dose of L‐[ring‐13C6]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC‐combustion‐isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring‐13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra‐assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter‐assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L‐[ring‐13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Quaternary protoberberine alkaloids belong to a pharmaceutically important class of isoquinoline alkaloids associated with bactericidal, fungicidal, insecticidal and antiviral activities. As traditional medicine gains wider acceptance, quick and robust analytical methods for the screening and analysis of plants containing these compounds attract considerable interest. Thin‐layer chromatography (TLC) combined with matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) is a powerful technique but suffers from dilution of the TLC bands resulting in decreased sensitivity and masking of signals in the low‐mass region both due to addition of matrix. This study integrates for the first time conventional silica gel TLC and laser desorption ionization mass spectrometry (LDI‐MS) thus eliminating the need for any external matrix. Successful separation of berberine (Rf = 0.56) and palmatine (Rf = 0.46) from Berberis barandana including their identification by MS are demonstrated. Furthermore, a robust electrospray ionization (ESI)‐MS method utilizing residual sample from TLC for quantification of berberine applying selected reaction monitoring and standard addition method is presented. The amount of berberine in the plant root prepared for the study was determined to be 0.70% (w/w). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Galanthamine‐type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC‐EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high‐resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC‐MS/MS) and accurate mass measurements (GC‐HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC‐MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine‐N‐oxide and N‐formylnorgalanthamine, the galanthamine‐type compounds showed abundant [M]+. and [M‐H]+ ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine‐type alkaloids, including 3‐O‐(2′‐butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC‐MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Three new C20‐diterpenoid alkaloids, along with twenty‐two known alkaloids, were isolated from the whole herbs of Delphinium tatsienense. The new alkaloids include a vakognavine‐type C20‐diterpenoid alkaloid, designated as tatsienenseine A ( 1 ), and two hetisine‐type C20‐diterpenoid alkaloids, designated as tatsienenseines B ( 2 ) and C ( 3 ). Their structures were elucidated by IR, HR‐ESI‐MS, 1D‐ and 2D‐NMR analyses.  相似文献   

14.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

15.
Veterinary medicines are widely administered to farm animals since they keep animals healthy at overcrowded conditions. Nevertheless the continuous administration of medicines to farm animals can frequently lead to the presence of residues of veterinary drugs in consumption products. Amprolium is a quaternary ammonium compound used in the treatment of coccidiosis. In this paper, a method based on CZE to analyze residues of amprolium in eggs was developed and validated for the first time. Parameters such as electrolyte type, concentration, and pH were optimized. In order to improve sensitivity, field‐amplified sample injection (FASI) was used for in‐line preconcentration after a quick and simple sample treatment based on SPE (Envi‐Carb). During method‐validation studies using egg samples, a matrix interference was found at the migration time of amprolium. This compound was identified as thiamine and confirmed by MSn experiments using CEcoupled to MS (CE‐MS) with an ion‐trap mass analyzer. CZE conditions were reoptimized to separate thiamine from amprolium allowing the quantification of amprolium in eggs at concentrations down to 75 μg/kg, which are far below the MRL‐legislated values.  相似文献   

16.
Capillary zone electrophoresis (CZE) and reverse phase high‐performance liquid chromatography (RP‐HPLC) were used for separation of diastereomers of phosphinic pseudopeptides in achiral separation media. A set of phosphinic pseudopeptides, i. e. peptides with one peptide bond substituted by phosphinic acid moiety ‐PO2‐CH2‐ derived from the structure N‐Ac‐Val‐AlaB(‐CH2)Leu‐His‐NH2 synthesized as a mixture of four diastereomers was used. Separations of diastereomers by CZE were carried out in Tris‐phosphate background electrolytes in the pH range 1.1–3.2 and at least partial separation of the four diastereomers of each pseudopeptide was achieved. A routinely used RP‐HPLC method (C18‐silica column and water/acetonitrile/trifluoroacetic acid mobile phase) was also capable of resolving the diastereomers. In addition, since individual diastereomers of majority of the pseudopeptides were isolated by RP‐HPLC it was possible to check the purity of these RP‐HPLC separated diastereomers and to compare the migration order of the diastereomers in CZE with their elution order in RP‐HPLC. The results obtained by CZE and RP‐HPLC demonstrate a complementarity of both methods in analysis and separation of phosphinic pseudopeptides including their diastereomers.  相似文献   

17.
Two new alkaloids, i.e., (2,3‐dihydro‐1‐oxo‐1H‐pyrrolo[1,2‐a]pyrrol‐7‐yl)methyl (2S*,3S*)‐3‐[(β‐D ‐glucopyranosyl)oxy]‐2‐hydroxy‐2‐(1‐methylethyl)butanoate ( 1 ) and 1,2‐dihydro‐8‐methoxy‐2‐oxoquinoline‐4‐carboxylic acid ( 2 ), were isolated from the alcoholic extract of the whole plant of Cynoglossum gansuense, together with twelve known compounds Their structures were characterized by means of spectroscopic methods, especially by 1H‐, 13C‐, and 2D‐NMR, as well as by HR‐MS experiments and comparison with literature data.  相似文献   

18.
The applicability of CZE with mass spectrometric detection for the determination of four chlorine species, namely chloride and three stable chlorine oxyanions, was studied. The main aspects of the proper selection of BGE and sheath liquid for the CE‐MS determinations of anions with high mobility were demonstrated, pointing out the importance of pH and the mobility of the anion in the BGE. The possibility of using uncoated fused silica capillary and common electrolytes for the separation was shown and the advantage of using extra pressure at the inlet capillary end was also presented. The linear range was found to be 1–100 µg/mL for ClO3? and ClO4?, 5–500 µg/mL for ClO2?, and 25–500 µg/mL for Cl?, but the sensitivity can be greatly improved if larger sample volume is injected and electrostacking effect is utilized. The LOD for ClO3? in drinking water was 6 ng/mL, when very large sample volume was injected (10 000 mbar·s was applied).  相似文献   

19.
In general capillary zone electrophoresis (CZE) separation models, o‐, m‐, and p‐phenylenediamine isomers can be separated in a weak acidic running buffer for their pKa values being 4.52, 5.64, 6.04, respectively, while o‐, m‐, and p‐dihydroxybenzene isomers can be separated in a weak basic buffer for their pKa values being 9.40, 9.40 and 10.04, respectively. So, it is hard to find a suitable running buffer at a fixed pH in normal CZE for simultaneous separation of these two groups of positional isomers. In this paper, a novel method based on alternately running two different pH buffers in CZE coupled with amperometric detection (CZE‐AD) was designed to simultaneously determine these two groups of positional isomers. It is found that when two different pH running buffers were employed alternately under appropriate order and time, the six analytes could be separated perfectly in less than 20 min and the detection limits were as low as 10–7 mol/L. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE–AD were investigated. Experimental results demonstrated that the introduced method was practical to simultaneously determine two groups of positional isomers with different pKa and had some advantages of high sensitivity, good repeatability and small sample requirement.  相似文献   

20.
We have evaluated CZE‐ESI‐MS/MS for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a 5‐point calibration curve by spiking 12 standard proteins into a solution of a human mAb. A custom CZE‐MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70‐min separation window (~90‐min total analysis duration) and ~300‐peak capacity. We also analyzed the sample using ultra‐performance LC‐MS/MS. CZE‐MS/MS generated approximately five times higher base peak intensity and more peptide identifications for low‐level spiked proteins. Both methods detected all proteins spiked at ~100 ppm level with respect to the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号