首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this study, surface molecularly imprinted polymers were prepared as the selective sorbents for separation of aristolochic acid I in herbal medicine extracts by a facile approach. A less toxic dummy template, ofloxacin, was used to create specific molecule recognition sites for aristolochic acid I in the synthesized polymers. The polymers were characterized by Fourier‐transfer infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, elemental analysis, and nitrogen adsorption–desorption test. The adsorption capacity was calculated using adsorption kinetics, selectivity, and recycling experiments. The obtained polymers exhibited high thermostability, fast equilibrium time, and excellent binding ability. Subsequently, the polymers applied as the solid‐phase extraction absorbent was proposed and used for the enrichment and analysis of aristolochic acid I in herbal plants. The result showed that the aristolochic acid I was enriched up to 16 times after analysis by using high‐performance liquid chromatography. The good linearity for aristolochic acid I was obtained in the range of 0.1–200 μg/mL (R 2 = 0.9987). The recovery and precision values were obtained (64.94–77.73%, RSDs% ≤ 0.8%, n  = 3) at three spiked concentration levels. This work provided a promising method for selective enrichment, extraction, and purification of aristolochic acid I from complex herbal plants.  相似文献   

2.
    
A hydrophobic ionic liquid modified thermoresponsive molecularly imprinted monolith was synthesized using N‐isopropylacrylamide as a thermoresponsive monomer and a long‐chain hydrophobic ionic liquid as an auxiliary modification monomer. The ionic‐liquid‐modified thermoresponsive molecularly imprinted polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. When the column temperature was 50°C, the synthesized monolithic column was successfully applied to the selective separation of homologue tanshinones within 7 min and eluted only by water (mobile phase) (theoretical plates more than 1.00 × 105 per meter). The negative Gibbs free energy (≤–2.37) values showed that the transfer of the tanshinones from the mobile phase to the stationary phase on this monolithic column was a thermodynamically spontaneous process. Good linearity of the five tanshinones by thermoresponsive monolith was obtained in the range of 0.100–25.0 μg/mL. The limit of detection (S/N = 3) and limit of quantitation (S/N = 10) were less than 0.0390 and 0.0630 μg/mL, respectively, with a relative standard deviation of <4.8%. In this proposed thermoresponsive chromatography method, the separation of homologue analytes can be achieved by changing the column temperature, and the use of water as the mobile phase would decrease the economic cost and organic pollution.  相似文献   

3.
    
A novel green hydrophilic levofloxacin imprinted polymer was presented via one‐step polymerization in water using ionic liquid 1,6‐hexa‐3,3′‐bis‐1‐vinylimidazolium bromine with multiple hydrophilic groups and 2‐hydroxyethyl methacrylate as a co‐functional monomer. Adsorption experiment revealed that the ionic liquid significantly improved the water compatible of imprinted polymer, and the excellent recognition of molecularly imprinted polymer for levofloxacin in water corresponds to the synergetic effect of H‐bonding and the electrostatic and π–π interactions between the levofloxacin and co‐functional monomer. Furthermore, the adsorption process of the imprinted material towards levofloxacin fitted the Langmuir model, and the maximum binding amount of levofloxacin onto the imprinted and corresponding non‐imprinted polymer were 16.45 and 6.82 mg/g at 25°C, respectively. After optimizing the parameters affecting solid phase extraction performance, an enrichment and determination system was achieved to separate and detect levofloxacin from water and sediment samples with recoveries that ranged from 83.67 to 101.33% and relative standard deviation of less than 5.59%.  相似文献   

4.
分子印迹聚合物是一类对目标分子具备特异性辨别能力的高分子吸附剂材料.运用本体聚合法,以牛血红蛋白(BHb)为模板分子,丙烯酰胺(AAM)和碘化1-乙烯基-3-甲基咪唑离子液体在交联剂、引发剂和加速剂的作用下进行聚合,制备的分子印迹材料对牛血红蛋白(BHb)具备特异性识别功能.同时,对识别条件进行了优化和讨论.  相似文献   

5.
以氯霉素(CAP)为模板,2-乙烯基吡啶(2-Vp)为功能单体,四氢呋喃和离子液体1-丁基-3-甲基咪唑四氟硼酸盐[BMIm]BF4的混合溶液为反应溶剂,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,合成了氯霉素的分子印迹及非印迹聚合物。优化功能单体、不同溶剂对印迹聚合物吸附性能的影响,结果表明,以2-乙烯基吡啶为功能单体,四氢呋喃和离子液体[BMIm]BF4(体积比1∶1)作为反应溶剂合成的分子印迹聚合物对氯霉素具有高的吸附容量,良好的特异性识别性能。氯霉素分子印迹聚合物的印迹因子为2.6,进行吸附-解吸附循环5次后,氯霉素印迹聚合物的性能稳定,可重复使用。将制备的氯霉素分子印迹聚合物作为富集材料,应用于鸡蛋样品中氯霉素的检测,回收率可达62.3%~81.1%,准确性好。  相似文献   

6.
    
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

7.
    
Molecularly imprinted polymers of glycyrrhizic acid were prepared by solution polymerization using glycyrrhizic acid as the template molecule, N‐vinypyrrolidone as functional monomer, N ,N‐methylene bisacrylamide as cross‐linker and ascorbic acid and hydrogen peroxide as initiators. Focused on the adsorption capacity and separation degree of the polymer to glycyrrhizic acid, the effects of the monomers, crosslinker and initiators were investigated and optimized. Finally, the structure of the polymer was characterized by using Fourier transform infrared spectroscopy and scanning electron microscopy. To obtain objective results, non‐imprinted molecular polymers prepared under the same conditions were also characterized. The adsorption quantity of the polymer was measured by high‐performance liquid chromatography. Under the optimum conditions, the maximum adsorption capacity of glycyrrhizic acid approached 15 mg/g, and the separation degree was as high as 2.5. The adsorption kinetics could be well described by a pseudo‐first‐order model, while the thermodynamics of the adsorption process could be described by the Langmuir model.  相似文献   

8.
    
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

9.
10.
沙拉沙星分子印迹聚合物的制备及其吸附特性   总被引:7,自引:0,他引:7  
杜小燕  彭涛  李俊锁 《分析化学》2003,31(6):720-722
以沙拉沙星为模板分子、甲基丙烯酸为功能单体和乙二醇二甲基丙烯酸酯为交联剂合成了分子印迹聚合物 ,并用平衡吸附实验研究了其吸附性能。结果表明 :该聚合物对沙拉沙星有较高的亲和性和选择性 ,解离常数Kd=7.2 6× 10 - 7~ 2 .19× 10 - 5mol L。  相似文献   

11.
    
A simple strategy was developed for the preparation of multi‐hollow magnetic molecularly imprinted polymers by incorporating 3‐indolebutyric acid and ferroferric oxide nanoparticles simultaneously into a poly(styrene‐co‐methacrylic acid) copolymer matrix. The as prepared absorbents were characterized using scanning electron microscopy, Fourier‐transform infrared spectroscopy and mercury porosimetry. The adsorption isotherms of indolebutyric acid revealed that there are two types of affinity binding sites in the absorbents. The apparent maximum binding capacity and dissociation constant were 17.88 mg/g and 158.7 μg/mL for high‐affinity binding sites and 9.310 mg/g and 35.04 μg/mL for low‐affinity binding sites, respectively. The results testified that multi‐hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules due to the high specific surface area as large as 511.3 m2/g. Recoveries of 75.5–86.8% were obtained for the indolebutyric acid spiked at three concentration levels in blank and pear samples.  相似文献   

12.
13.
分子印迹技术研究进展   总被引:8,自引:0,他引:8  
分子印迹是制备具有分子特异识别功能聚合物的一种技术。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。引用文献66篇。  相似文献   

14.
    
We describe novel cinnamic acid polydopamine‐coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi‐walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high‐performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid‐phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4–115.0% for cinnamic acid, 89.4–103.0% for ferulic acid and 86.6–96.0% for caffeic acid.  相似文献   

15.
    
Summary: Molecularly imprinted polymers with specific recognition to salicylic acid (SA-MIPs) were prepared by oil-in-water emulsion polymerization using salicylic acid as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The morphology and size distribution of the SA-MIPs were detected by SEM and photon cross correlation spectrometry. Equilibrium binding experiments and Scatchard analyses were carried out to investigate the selectivity of the SA-MIPs. The results show that the SA-MIPs exhibit a higher affinity and selectivity to salicylic acid than to m-hydroxybenzoic acid and sulfosalicylic acid. Two classes of binding sites were produced in the SA-MIPs and the equilibrium dissociation constants were estimated to be 2.03 and 9.97 mmol/L, respectively.  相似文献   

16.
    
In this study, highly selective core–shell molecularly imprinted polymers on the surface of magnetic nanoparticles were prepared using protocatechuic acid as the template molecule. The resulting magnetic molecularly imprinted polymers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The binding performances of the prepared materials were evaluated by static and selective adsorption. The binding isotherms were obtained for protocatechuic acid and fitted by the Langmuir isotherm model and Freundlich isotherm model. Furthermore, the resulting materials were used as the solid‐phase extraction materials coupled to high‐performance liquid chromatography for the selective extraction and detection of protocatechuic acid from the extracts of Homalomena occulta and Cynomorium songaricum with the recoveries in the range 86.3–102.2%.  相似文献   

17.
《Analytical letters》2012,45(3):600-614
Abstract

A new method using molecularly imprinted polymers (MIPs) as specific adsorbent materials coupled with ELISA analysis is being reported for the first time for the detection of clenbuterol (CLB) residue in the pig muscles. After optimization of the posttreatments, the total amount of template bleeding in the CLB MIPs was decreased to only 3.0 ng CLB/60 mg MIPs, which is 10 times lower than that of the previous report. Moreover, compared to the methods of C18-ELISA and single ELISA, the combined molecularly imprinted solid-phase extraction (MISPE)–ELISA exhibited high precision and robust accuracy for CLB at all three spiked levels of 0.5, 5.0, and 10.0 ng g?1.  相似文献   

18.
L-酪氨酸印迹分子的制备及性能研究   总被引:1,自引:0,他引:1  
利用分子印迹技术采用传统加热法制备出酪氨酸他子印迹聚合物。用红外光谱分析了聚合物结构。研究了印迹他子与功能单体的物质的量对聚合物结合性的影响,吸收效率表征结果显示,与化学组成相同的空白聚合物相比,印迹聚合物具有更高的吸附效率。  相似文献   

19.
    
In this study, novel photo‐stimulated molecularly imprinted polymers based on magnetic mesoporous carrier surface were developed for selective identification and intelligent separation of sulfamerazine in complex samples. The photosensitive monomer of the molecularly imprinted polymers was azobenzene derivative 5‐[(4‐(methacryloyloxy)phenyl) diazenyl] isophthalic acid with stimulus reaction mechanisms, which has photoisomerization between trans and cis for N=N bonds. Further, the properties of the photo‐stimulated molecularly imprinted polymers were further evaluated through several sets of adsorption experiments. It illustrated that the maximum adsorption amount is 0.45 mmol/L. By ultraviolet spectrophotometry, the material reaches typical characteristic peaks of photo sensitivity, and the cycle time is 16 min. Three adsorption and desorption processes were repeated, the adsorption rate reached 34.4%. Overall, the photo‐stimulated molecularly imprinted polymers can enrich and separate determine sulfamerazine with high selectivity, which have good recovery for real samples.  相似文献   

20.
2,4-二氯苯氧乙酸分子记印聚合物研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以2,4-二氯苯氧乙酸(2,4-D)为模板分子,甲基丙烯酸(MAA)为功能单体,亚乙基二甲基丙烯酸二丁酯(EDMA)为交联剂制备了具有选择性的2,4-D分子记印聚合物,测定了其红外光谱性质,并采用流动电势法测试了分子记印聚合物对模板2,4-D的选择性识别能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号