首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

2.
Electrocatalytic water splitting into H2 and O2 is a key technology for carbon‐neutral energy. Here, we report a modular materials design leading to noble metal‐free composite electrocatalysts, which combine high electrical conductivity, high OER and HER reactivity and high durability. The scalable bottom‐up fabrication allows the stable deposition of mixed metal oxide nanostructures with different functionalities on copper foam electrodes. The composite catalyst shows sustained OER and HER activity in 0.1 m aqueous KOH over prolonged periods (t>10 h) at low overpotentials (OER: ≈300 mV; HER: ≈100 mV) and high faradaic efficiencies (OER: ≈100 %, HER: ≈98 %). The new synthetic concept will enable the development of multifunctional, mixed metal oxide composites as high‐performance electrocatalysts for challenging energy conversion and storage reactions.  相似文献   

3.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

4.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

5.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

6.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

7.
《化学:亚洲杂志》2017,12(22):2956-2961
Developing efficient non‐noble metal and earth‐abundant electrocatalysts with tunable microstructures for overall water splitting is critical to promote clean energy technologies for a hydrogen economy. Herein, novel three‐dimensional (3D) flower‐like Ni2P composed of mesoporous nanoplates with controllable morphology and high surface area was prepared by a hydrothermal method and low‐temperature phosphidation as efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the urchin‐like Nix Py , the 3D flower‐like Ni2P with a diameter of 5 μm presented an efficient and stable catalytic performance in 0.5 m H2SO4, with a small Tafel slope of 79 mV dec−1 and an overpotential of about 240 mV at a current density of 10 mA cm−2 with a mass loading density of 0.283 mg cm−2. In addition, the catalyst also exhibited a remarkable performance for the OER in 1.0 m KOH electrolyte, with an overpotential of 320 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 72 mV dec−1. The excellent catalytic performance of the as‐prepared Ni2P may be ascribed to its novel 3D morphology with unique mesoporous structure.  相似文献   

8.
Uniform Ni3C nanodots dispersed in ultrathin N‐doped carbon nanosheets were successfully prepared by carburization of the two dimensional (2D) nickel cyanide coordination polymer precursors. The Ni3C based nanosheets have lateral length of about 200 nm and thickness of 10 nm. When doped with Fe, the Ni3C based nanosheets exhibited outstanding electrocatalytic properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). For example, 2 at % Fe (atomic percent) doped Ni3C nanosheets depict a low overpotential (292 mV) and a small Tafel slope (41.3 mV dec−1) for HER in KOH solution. An outstanding OER catalytic property is also achieved with a low overpotential of 275 mV and a small Tafel slope of 62 mV dec−1 in KOH solution. Such nanodot‐incorporated 2D hybrid structures can serve as an efficient bifunctional electrocatalyst for overall water splitting.  相似文献   

9.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

10.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

11.
To achieve sustainable production of H2 fuel through water splitting, low‐cost electrocatalysts for the hydrogen‐evolution reaction (HER) and the oxygen‐evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Herein, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ca. 218 mV at 10 mA cm?2, which is superior to that of the state‐of‐the‐art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyzer delivers a current density of 10 mA cm?2 at a very low cell voltage of ca. 1.56 V. In combination with DFT calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen‐containing intermediates, thus accelerating the overall electrochemical water splitting.  相似文献   

12.
Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal–air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core–shell Co@Co3O4 nanoparticles embedded in CNT‐grafted N‐doped carbon‐polyhedra obtained by the pyrolysis of cobalt metal–organic framework (ZIF‐67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2, and RuO2 and thus ranking them among one of the best non‐precious‐metal electrocatalysts for reversible oxygen electrodes.  相似文献   

13.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

14.
Herein, we demonstrate the use of heterostructures comprised of Co/β‐Mo2C@N‐CNT hybrids for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline electrolyte. The Co can not only create a well‐defined heterointerface with β‐Mo2C but also overcomes the poor OER activity of β‐Mo2C, thus leading to enhanced electrocatalytic activity for HER and OER. DFT calculations further proved that cooperation between the N‐CNTs, Co, and β‐Mo2C results in lower energy barriers of intermediates and thus greatly enhances the HER and OER performance. This study not only provides a simple strategy for the construction of heterostructures with nonprecious metals, but also provides in‐depth insight into the HER and OER mechanism in alkaline solution.  相似文献   

15.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt‐like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual‐doped carbon‐encapsulated ruthenium diphosphide (RuP2@NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2@NPC not only has Pt‐like HER activity with small overpotentials at 10 mA cm−2 (38 mV in 0.5 m H2SO4, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition‐metal phosphides/heteroatom‐doped carbon heterostructures with advanced performance in HER.  相似文献   

16.
《中国化学快报》2022,33(11):4930-4935
Exploring efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) electrocatalysts is crucial for developing water splitting devices. The composition and structure of catalysts are of great importance for catalytic performance. In this work, a heterogeneous Ru modified strategy is engineered to improve the catalytic performance of porous NiCo2O4 nanosheets (NSs). Profiting from favorable elements composition and optimized structure property of decreased charge transfer barrier, more accessible active sites and increased oxygen vacancy concentration, the Ru-NiCo2O4 NSs exhibits excellent OER activity with a low overpotential of 230 mV to reach the current density of 10 mA/cm2 and decent durability. Furthermore, Ru-NiCo2O4 NSs show superior HER activity than the pristine NiCo2O4 NSs, as well. When assembling Ru-NiCo2O4 NSs couple as an alkaline water electrolyzer, a cell voltage of 1.60 V can deliver the current density of 10 mA/cm2. This work provides feasible guidance for improving the catalytic performance of spinel-based oxides.  相似文献   

17.
Electrochemical water splitting can provide a promising avenue for sustainable hydrogen production. Highly efficient electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are extremely important for the practical application of water splitting technology. Herein, a one-step annealing strategy is reported for the fabrication of a metal–organic framework-derived bifunctional self-supported electrocatalyst, which is composed of two-dimensional N-doped carbon-wrapped Ir-doped Ni nanoparticle composites supported on Ni foam (NiIr@N-C/NF). The resultant NiIr@N-C/NF displays excellent electrocatalytic performance in 1.0 m KOH, with low overpotentials of 32 mV at 10 mA cm−2 for the HER and 329 mV at 50 mA cm−2 for the OER. Particularly, the HER-OER bifunctional NiIr@N-C/NF needs only 1.50 V to yield 10 mA cm−2 for overall water splitting.  相似文献   

18.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

19.
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni−O−Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni−O−Ir bridge induced the optimization of H2O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.  相似文献   

20.
《中国化学快报》2022,33(11):4761-4765
Typically, rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency. NiFe layered double hydroxide (NiFe LDH) composite, an efficient oxygen evolution reaction (OER) catalyst, suffers from slow hydrogen evolution reaction (HER) kinetics, restricting its application for overall water splitting. Herein, we construct the hierarchical MoS2/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER. Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy, tens of exposed active sites, rapid mass- and charge-transfer processes, the MoS2/NiFe LDH displays a highly efficient synergistic electrocatalytic effect. The MoS2/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity, only 98 mV overpotential at 10 mA/cm2. Significantly, when it assembled as anode and cathode for overall water splitting, only 1.61 V cell voltage was required to achieve 10 mA/cm2 with excellent durability (50 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号