首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A contact lens (CL) biosensor for in situ monitoring of tear glucose was fabricated and tested. Biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer and polydimethyl siloxane (PDMS) were employed as the biosensor material. The biosensor consists of a flexible Pt working electrode and a Ag/AgCl reference/counter electrode, which were formed by micro-electro-mechanical systems (MEMS) technique. The electrode at the sensing region was modified with glucose oxidase (GOD). The CL biosensor showed a good relationship between the output current and glucose concentration in a range of 0.03-5.0 mM, with a correlation coefficient of 0.999. The calibration range covered the reported tear glucose concentrations in normal and diabetic patients. Also, the CL biosensor was applied to a rabbit for the purpose of tear glucose monitoring. The basal tear glucose was estimated to 0.11 mM. Also, the change of tear glucose induced by the change of blood sugar level was assessed by the oral glucose tolerance test. As a result, tear glucose level increased with a delay of 10 min from blood sugar level. The result showed that the CL biosensor is expected to provide further detailed information about the relationship between dynamics of blood glucose and tear glucose.  相似文献   

2.
A biosensor system was developed for continuous estimation of blood glucose in fish. Because it is difficult to measure blood components in real-time due to decreased sensor output resulting from blood coagulation and coalescing blood proteins at the sensor placement site, we used the eyeball scleral interstitial fluid (EISF) as the site of sensor implantation. Evaluation of the relationship between EISF and blood glucose concentrations revealed that the blood glucose concentration correlated closely with the EISF glucose concentration (y = 2.2996 + 0.9438x, R = 0.960, n = 112). To take advantage of the close correlation between blood and EISF glucose, we prepared a needle-type enzyme sensor for implantation in the fish sclera using a flexible wire electrode. The sensor provided a rapid response, good linearity, and reproducibility. Continuous glucose monitoring could be carried out by implanting this needle-type glucose sensor onto the eye. The findings indicated that the glucose concentration increased with sensor output current over time, and that changes in the blood glucose were continuously reflected in the EISF. The glucose concentration was estimated based on the one-point or two-point calibration methods. The two-point calibration method yielded the most accurate glucose monitoring (blood glucose range of 70-420 mg dL−1) over 160 min. Sensor-estimated glucose and whole blood glucose values were highly correlated (y = 0.4401 + 0.8656x, R = 0.958).  相似文献   

3.
Ions play a pivotal role in the biological regulatory processes and catalyzing enzymatic reactions; however, increased levels in the human body leads to many health risks or toxicity. To circumvent this, periodic and precise monitoring of significant ions in environmental, biological, chemical, and food samples are necessary, which need to be mapped/monitored continuously. This has prompted researchers to develop cost-effective, handy, and rapid techniques which can be fruitful for even untrained personnel by obviating manual user instructions, lengthy sample preparation steps, and costly instruments. The exploitation of user-friendly behavior, affordable price, and ubiquitous usage of smartphones has led to the development of a plethora of smartphone-based methodologies whereby they can serve as devices, detectors, or interfaces. Their in-built high-resolution rear camera, ambient light sensors, wireless connectivity, internal storage, and global positioning systems minimize the cost and simplify the fabrication of developing point-of-care testing devices, making them operable in challenging conditions with limited resources. Coupling smartphones with iCloud technology allows the synchronous storing and online transmitting of databases to consumers even in remote areas, which helps in real-time monitoring and continuously scrutinizing contaminants in the environment. This is not an exhaustive review but enumerates the progress made in the development of smartphone-based analytical aids by incorporating advanced device fabrication strategies and hassle-free analytical protocols during the past years (2014–2021). An account of key features like sensing performance of the developed methods in terms of selectivity, sensitivity, and detection limits and their limitations for recognition of environmental and biologically eminent ions is also discussed. Lastly, this review paves the way for the development of advanced innovative analytical techniques employing smartphone technology for the foreseeable future to ensure point-of-care human safety.  相似文献   

4.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

5.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

6.
A Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au–cystamine–glutaraldehyde–lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 ± 0.2) × 104 M− 1 for Jacalin–Fetuin and (4.5 ± 0.1) × 102 M− 1 for ConA–maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin–carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides.  相似文献   

7.
A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm−2, polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s−1, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm−2 mM−1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.  相似文献   

8.
AmperometricGlucoseSensorwithTetrathiafulvaleneasanElectronTransferMediatorSUNChang-qing,YANGXu,LUANChai-xia,GAOQianandXUHong...  相似文献   

9.
Mesoporous MnO2 (mesoMnO2) is synthesized facilely through sol–gel process using nonionic surfactant polyxyethylene fatty alcohol (AEO9) as template. Transmission electron microscopy (TEM) image and N2 adsorption/desorption isotherm show that the obtained mesoMnO2 material presents disordered porous structure and appropriate pore size suitable for the immobilization of glucose oxidase (GOx). An amperometric glucose biosensor based on GOx entrapped in mesoMnO2 is fabricated, in which mesoMnO2 also acts as a catalyst for the electrochemical oxidation of H2O2 produced by enzyme reaction. The biosensor shows fast and sensitive current response to glucose in the linear range of 0.0009–2.73 mM. The response time (t95%) is less than 7 s. The sensitivity and detection limit are 24.2 μA cm−2 mM−1 and 1.8 × 10−7 M (S/N = 3), respectively. This indicates that mesoMnO2 has promising application in enzyme immobilization and biosensor construction.  相似文献   

10.
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.  相似文献   

11.
An on-line microfluidic sensing device with an enzyme-modified pre-cell coupled to an amperometric detector for the monitoring of paracetamol in pharmaceutical formulations is described. Horseradish peroxidase (HRP) [EC 1.11.1.7], immobilized on a 3 μl pre-cell, in presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine. The electrochemical reduction back to hydroquinone is detected on glassy carbon electrode surface at −0.10 V. The recovery of paracetamol from 10 samples ranged from 99.00 to 101.10%. This method could be used to determine paracetamol concentration in the range 0.35-100 μM (r = 0.997) with a limit of detection of 3.0 × 10−7 M and a relative standard deviation was less than 4.1% (n = 8). The method was successfully applied for the processing of as many as 20 samples per hour of paracetamol in pharmaceutical formulations.  相似文献   

12.
Chunping You  Baohong Liu 《Talanta》2009,78(3):705-2638
A strategy of protein entrapment within mesoporous carbon matrices is demonstrated to probe the electrochemistry of glucose oxidase. Large surface area and remarkable electro-catalytic properties of carbon mesoporous materials make them suitable candidates for high loading of protein molecules and the promotion of heterogeneous electron transfer. In this work, two kinds of mesoporous carbon nanocomposite films were designed and prepared with highly ordered two-dimensional (2D) and three-dimensional (3D) structures for the immobilization of glucose oxidase, in which the quasi-reversible electron transfer of the redox enzyme was probed, and the apparent heterogeneous electron transfer rate constants () are 3.9 and 4.2 s−1, respectively. Furthermore, the associated biocatalytic activity was also revealed. Highly ordered 3D-mesoporous carbon material exhibited larger adsorption capacity for glucose oxidase and the immobilized enzymes retained a higher bioactivity compared with 2D-mesoporous carbons. The preparation of protein-entrapped mesoporous carbon nanocomposites expands the scope of carbon-based electrochemical devices and opens a new avenue for the development of biosensors.  相似文献   

13.
Cui G  Yoo JH  Woo BW  Kim SS  Cha GS  Nam H 《Talanta》2001,54(6):1105-1111
Electrochemical properties of screen-printed carbon paste electrodes (CPEs) with a glucose oxidase-immobilized and hexamineruthenium (III) chloride ([Ru(NH3)6]3+) containing nitrocellulose (NC) strip were examined. The NC strip (2×8 mm) placed on the CPEs printed on polyester (PE) film is tightly sealed using another PE film on the top with open edges on both sides. Samples containing macromolecules and particles (e.g. proteins and blood cells) are applied at one edge of the NC strip and reach the detection area, chromatographically separating small molecules (e.g. glucose, ascorbate, acetaminophen, and uric acid) of analytical interests. Since sample volumes and the amount of catalytic reagents (mediator and glucose oxidase) are precisely predefined by the dimension and pore size (8 μm) of the NC strip, the sensor-to-sensor reproducibility and accuracy of analysis are greatly improved. The use of [Ru(NH3)6]3+ mediator, which exhibits characteristic substantially lowers the applied potential (0.0 V vs Ag/AgCl) for glucose determination and eliminates the interference from other oxidizable species, providing improved analytical results.  相似文献   

14.
Detection of pollutants is of significant importance for environmental protection. However, conventional monitoring methods are often time-consuming, and require expensive equipments. Biosensors based on enzyme linked immunosorbent assay (ELISA) provide an alternative method to conventional ones. In this research, the reduction in the size of ELISA utilizing micro-chemical reaction is described in a micro-flow immunosensor chip. The immunosensor chips were fabricated by micro-electromechanical system (MEMS) technology. The quantitative determination of coplanar polychlorinated biphenyls (Co-PCBs) was performed by using a micro-flow immunosensor chip. Polystyrene beads were used as the solid substrate for the immobilization of Co-PCB antibody. The antibody-immobilized beads were introduced into the flow channel. As a competitive ELISA, sample solution mixed with horseradish peroxidase (HRP) conjugated antigen, and non-HRP conjugated antigen was allowed to react in the flow channel. After the antigen-antibody reaction, addition of phosphate buffer solution containing hydrogen peroxide and the fluorogenic substrate produced a fluorescent dye, which was monitored with the resulting change in the fluorescence intensity. By using our micro-flow immunosensor chip, it was possible to determine the sensing range of Co-PCB derivatives up to 0.1 ppt in 30 s. This immunosensor chip had a wide linear range for Co-PCB detection from 0.1 pg/ml to 1.0 μg/ml. The regression analysis provided the correlation coefficients of r = 0.982−0.964 with good reproducibility and precision. In a series of five measurements with immunosensor chips prepared with a new batch of antibody-immobilized polystyrene beads, a relative standard deviation of 21.3% was obtained. Our immunosensor chip design reported here has the potential to be implemented to several different detection methodologies for numerous analytes.  相似文献   

15.
A new alternative method for bioprocess monitoring based on bienzymatic analytical microreactors integrated in a flow injection analysis (FIA) system is described. Glucose-, alcohol-, lactate-, galactose- and l-amino acid oxidases (GO, AO, LacO, GalO and LAAO) and horseradish peroxidase (HRP) are immobilized on controlled pore glass (CPG) and used for the development of glucose, ethanol, lactate, galactose and amino acid sensors. The analytical methodology is based on HRP catalysed reaction of hydrogen peroxide produced by oxidases with phenol-4-sulfonic acid and 4-aminoantipyrine. The immobilized enzymes are characterized and used for preparation of the packed bed analytical microreactors. Shelf life and operational stability of the microeactors are determined. GO/HRP, AO/HRP and LAAO/HRP microreactors showed excellent shelf life, they could be stored and reused for more than 6 months with no or very little activity loss, while GalO/HRP and LacO/HRP could be stored for shorter periods of time (10-20 days). Operational stability of GO and LacO microreactors was very good: an equivalent to 16,900 FIA injections of 25 μl to a LacO microreactor resulted in loss of half of its activity, immobilized GO was so stable that it was impossible to evaluate enzyme halflife. Immobilized GalO and LAAO lose their operational activity much faster: approximately 1400 and 8000 FIA injections of the respective substrate solution in a FIA set-up resulted in 50% activity loss. The methods with all the described microreactors were successfully validated using off-line samples from S. cerevisiae, E. coli and mesenchymal stem cell cultures with HPLC as the reference method.  相似文献   

16.
In the present work, we show how TiO2 nanotube layers that are decorated with a Pt-nanoparticle coating can be fabricated and operated as a reusable glucose sensing system. A critical amount of Pt coating is essential not only to provide an effective catalyst for glucose oxidation but also to establish a sufficient conductivity along TiO2 nanotube walls to allow an efficient amperometric operation of the electrode. On such an electrode the self-cleaning photocatalytic features of TiO2 can be maintained and used to re-establish poisoned activity of the Pt particles.  相似文献   

17.
《Analytical letters》2012,45(4):367-374
Enzyme acetylcholinesterase (AChE) is an important part of cholinergic neurotransmission. It is targeted by many toxins such as nerve agents, organophosphates, and carbamate pesticides. Several drugs for treatment of Alzheimer's disease and Myasthenia gravis are also AChE inhibitors. The inhibitory effect can be used for assay purposes. The presented experiment is devoted to the construction of a colorimetric dipstick with immobilized AChE and using indoxylacetate as a chromogenic substrate. Standard qualitative cellulose filter papers, high-performance TLC plates, cotton gauze, and parafilm were chosen as matrices for the testing. The constructed dipsticks were created for assays of paraoxon as a model organophosphate pesticide and neostigmine as a model carbamate. The assessed limit of detection was 10?7 mol/l for both inhibitors. It responds absolutely by detecting 4 pmol of inhibitor when a sample volume of 40 µL is considered. Long term stability and optimization of immobilization were also done and practical importance is discussed. The prepared dipsticks were also used for assays of paraoxon spiked tap and rain water. The suitability of the dipsticks for practical performance was approved. Intensive color changes from white to blue are suitable for scoring by a naked eye.  相似文献   

18.
采用电聚合法制备了聚硫堇氧化还原电化学探针, 以金纳米粒子为固定核酸适配体的载体构建了非标记型核酸适配体传感器. 用电化学阻抗谱对传感器的组装过程进行了监测, 用循环伏安法和差分脉冲伏安法考察了传感器的电化学行为. 结果表明, 该传感器对凝血酶的检测在1.0 pg/mL~500 ng/mL范围内呈良好的线性关系, 相关系数为0.998, 检出限为0.38 pg/mL. 该传感器制备简单、 灵敏度高且抗干扰能力强.  相似文献   

19.
采用四硫富瓦烯(TTF)作为黄嘌呤氧化酶与玻碳电极之间的电子传递体,通过牛血清白蛋白和戊二醛交联剂,把黄嘌呤氧化酶固定在Nafion-TTF修饰玻碳电极上,制备成次黄嘌呤传感器。该传感器的线性范围为1.0×10-5~7.5×10-4mol/L,响应时间小于60s。  相似文献   

20.
A multicolor immunochromatographic assay platform based on quantum dot nanobeads (QBs) for the rapid and simultaneous detection of nitrofuran metabolites in different aquatic products is documented. These metabolites include 3-amino-2-oxazolidinone (AOZ), 1-aminohydantoin (AHD), semicarbazide (SEM), and 3-amino-5-morpholino-methyl-1,3-oxazolidinone (AMOZ). QBs with emission colors of red, yellow, green, and orange were employed and functionalized with the corresponding antibodies to each analyte to develop a multicolor channel. The visual detection limits (cutoff values) of our method for AOZ, AHD, SEM, and AMOZ reached up to 50 ng/mL, which were 2, 20, 20, and 20 times lower than those of traditional colloidal gold test strips, respectively. The test strip is capable of detection within 10 min in real samples while still achieving good stability and specificity. These results demonstrate that the developed multicolor immunochromatographic assay platform is a promising technique for multiplex, highly sensitive, and on-site detection of nitrofuran metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号