共查询到20条相似文献,搜索用时 15 毫秒
1.
Diana C. Vinueza-Espinosa Cristina Santos Cristina Martínez-Labarga Assumpció Malgosa 《Electrophoresis》2020,41(24):2149-2158
Retrieving DNA from highly degraded human skeletal remains is still a challenge due to low concentration and fragmentation, which makes it difficult to extract and purify. Recent works showed that silica-based methods allow better DNA recovery and this fact may be attributed to the type of bones and the quality of the preserved tissue. However, more systematic studies are needed to evaluate the efficiency of the different silica-based extraction methods considering the type of bones. The main goal of the present study is to establish the best extraction method and the type of bone that can maximize the recovery of PCR-amplifiable DNA and the subsequent retrieval of mitochondrial and nuclear genetic information. Five individuals were selected from an archaeological site located in Catalonia–Spain dating from 5th to 11th centuries AD. For each individual, five samples from different skeletal regions were collected: petrous bone, pulp cavity and cementum of tooth, and rib and limb bones. Four extraction methods were tested, three silica-based (silica in-suspension, HE column and XS plasma column) and the classical method based on phenol–chloroform. Silica in-suspension method from petrous bone and pulp cavity showed the best results. However, the remains preservation will ultimately be the key to the molecular result success. 相似文献
2.
Christian Haarkötter Diana C. Vinueza-Espinosa Xiomara Gálvez María Saiz María Isabel Medina-Lozano José Antonio Lorente Juan Carlos Álvarez 《Electrophoresis》2023,44(19-20):1559-1568
Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15–30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains. 相似文献
3.
Muhammad S. Nazir Sasitaran Iyavoo Sharizah Alimat Nathalie Zahra Sheikha H. Sanqoor Judith A. Smith Colin Moffatt Will Goodwin 《Electrophoresis》2013,34(24):3352-3360
In this study, we have developed a PCR multiplex that can be used to assess DNA degradation and at the same time monitor for inhibition: primers have been designed to amplify human, pig, and rabbit DNA, allowing pig and rabbit to be used as experimental models for taphonomic research, but also enabling studies on human DNA persistence in forensic evidence. Internal amplified controls have been added to monitor for inhibition, allowing the effects of degradation and inhibition to be differentiated. Sequence data for single‐copy nuclear recombination activation gene (RAG‐1) from human, pig, and rabbit were aligned to identify conserved regions and primers were designed that targeted amplicons of 70, 194, 305, and 384 bp. Robust amplification in all three species was possible using as little as 0.3 ng of template DNA. These have been combined with primers that will amplify a bacterial DNA template within the PCR. The multiplex has been evaluated in a series of experiments to gain more knowledge of DNA persistence in soft tissues, which can be important when assessing what material to collect following events such as mass disasters or conflict, when muscle or bone material can be used to aid with the identification of human remains. The experiments used pigs as a model species. When whole pig bodies were exposed to the environment in Northwest England, DNA in muscle tissue persisted for over 24 days in the summer and over 77 days in the winter, with full profiles generated from these samples. In addition to time, accumulated degree days (ADD) were also used as a measure that combines both time and temperature—24 days was in summer equivalent to 295 ADD whereas 77 days in winter was equivalent to 494 ADD. 相似文献
4.
A novel,integrated forensic microdevice on a rotation‐driven platform: Buccal swab to STR product in less than 2 h
下载免费PDF全文
![点击此处可从《Electrophoresis》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Jordan O. Cox Teresa Sikes DeCarmen Yiwen Ouyang Briony Strachan Hillary Sloane Cathey Connon Kemper Gibson Kimberly Jackson James P. Landers Tracey Dawson Cruz 《Electrophoresis》2016,37(23-24):3046-3058
This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme‐based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared‐mediated PCR (IR‐PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme‐mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube‐based) protocol. Initial microdevice IR‐PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near‐full profiles that suffered from interlocus peak imbalance and poor adenylation (significant ?A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE‐ready STR amplicons in less than 2 h (<1 h of hands‐on time). Using this approach, high‐quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands‐free, closed‐system alternative to traditional forensic methods. 相似文献
5.
Julia Burrill Rachel Hotta Barbara Daniel Nunzianda Frascione 《Electrophoresis》2021,42(16):1594-1604
Successful forensic DNA profiling from handled items is increasingly routine in casework. This “touch DNA” is thought to contain both cellular and acellular nucleic acid sources. However, there is little clarity on the origins or characteristics of this material. The cellular component consists of anucleate, terminally differentiated corneocytes (assumed to lack DNA), and the occasional nucleated cell. The acellular DNA source is fragmentary, presumably cell breakdown products. This study examines the relative contributions each component makes to the hand-secretions (endogenous) and hand-accumulations (exogenous) by recovering rinses from the inside and outside of worn gloves. Additionally, cellular and acellular DNA was measured at timepoints up to 2 h after hand washing, both with and without interim contact. Microscopic examination confirmed cell morphology and presence of nucleic acids. Following the novel application of a hair keratinocyte lysis method and plasma-DNA fragment purification to hand rinse samples, DNA profiles were generated from both fractions. Exogenous cell-free DNA is shown to be a significant source of touch DNA, which reaccumulates quickly, although its amplifiable nuclear alleles are limited. Endogenous DNA is mostly cellular in origin and provides more allelic information consistently over time. 相似文献
6.
《Electrophoresis》2017,38(8):1163-1174
Next generation sequencing (NGS) is the emerging technology in forensic genomics laboratories. It offers higher resolution to address most problems of human identification, greater efficiency and potential ability to interrogate very challenging forensic casework samples. In this study, a trial set of DNA samples was artificially degraded by progressive aqueous hydrolysis, and analyzed together with the corresponding unmodified DNA sample and control sample 2800 M, to test the performance and reliability of the ForenSeqTM DNA Signature Prep kit using the MiSeq Sequencer (Illumina). The results of replicate tests performed on the unmodified sample (1.0 ng) and on scalar dilutions (1.0, 0.5 and 0.1 ng) of the reference sample 2800 M showed the robustness and the reliability of the NGS approach even from sub‐optimal amounts of high quality DNA. The degraded samples showed a very limited number of reads/sample, from 2.9–10.2 folds lower than the ones reported for the less concentrated 2800 M DNA dilution (0.1 ng). In addition, it was impossible to assign up to 78.2% of the genotypes in the degraded samples as the software identified the corresponding loci as “low coverage” (< 50x). Amplification artifacts such as allelic imbalances, allele drop outs and a single allele drop in were also scored in the degraded samples. However, the ForenSeqTM DNA Sequencing kit, on the Illumina MiSeq, was able to generate data which led to the correct typing of 5.1–44.8% and 10.9–58.7% of 58 of the STRs and 92 SNPs, respectively. In all trial samples, the SNP markers showed higher chances to be typed correctly compared to the STRs. This NGS approach showed very promising results in terms of ability to recover genetic information from heavily degraded DNA samples for which the conventional PCR/CE approach gave no results. The frequency of genetic mistyping was very low, reaching the value of 1.4% for only one of the degraded samples. However, these results suggest that further validation studies and a definition of interpretation criteria for NGS data are needed before implementation of this technique in forensic genetics. 相似文献
7.
DNA methylation is the most promising biomarker for estimating human age. There are various methods used for analyzing DNA methylation. Among those, the SNaPshot assay-based method provides a semi-quantitative measurement of DNA methylation using capillary electrophoresis on genetic analyzers. However, DNA methylation measures produced using different types of genetic analyzers have never been compared, although differences in methylation values can directly affect age estimates. To evaluate the differences between the results generated by different genetic analyzers, we analyzed the same blood, saliva, and control methylated DNA using three genetic analyzers—the Applied Biosystems 3130, 3500, and SeqStudio—and compared the methylation values at five CpG sites: ELOVL2, FHL2, KLF14, MIR29B2C, and TRIM59. The methylation value at each of the five CpG sites decreased in the order 3130, 3500, and SeqStudio. The differences in the results produced by the different genetic analyzers resulted in significant errors when applying the 3500 and SeqStudio data to a previous age estimation model constructed using the 3130 Genetic Analyzer data. Therefore, DNA methylation measurements from 3500 and SeqStudio were corrected using the regression functions obtained by plotting the DNA methylation data of one instrument versus the other to facilitate the application of DNA methylation data from one instrument to the age prediction model based on other instruments. The age prediction accuracy obtained by applying corrected 3500 and SeqStudio data to the existing age estimation model was as high as observed in the 3130 data. 相似文献
8.
DNA purification from crude samples for human identification using gradient elution isotachophoresis
Elizabeth A. Strychalski Christopher Konek Erica L. R. Butts Peter M. Vallone Alyssa C. Henry David Ross 《Electrophoresis》2013,34(17):2522-2530
Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure‐driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors. On‐line DNA quantification using laser‐induced fluorescence compared favorably with quantitative PCR measurements and potentially eliminates the need for quantitative PCR prior to STR analysis. GEITP promises to address the need for a rapid and robust method to deliver DNA from crude samples to aid the forensic community in human identification. 相似文献
9.
Sohee Cho Kyoung-Jin Shin Su-Jin Bae Ye-Lim Kwon Soong Deok Lee 《Electrophoresis》2020,41(18-19):1600-1605
DNA analysis of degraded samples and low-copy number DNA derived from skeletal remains, one of the most challenging forensic tasks, is common in disaster victim identification and genetic analysis of historical materials. Massively parallel sequencing (MPS) is a useful technique for STR analysis that enables the sequencing of smaller amplicons compared with conventional capillary electrophoresis (CE), which is valuable for the analysis of degraded DNA. In this study, 92 samples of human skeletal remains (70+ years postmortem) were tested using an in-house MPS-STR system designed for the analysis of degraded DNA. Multiple intrinsic factors of DNA from skeletal remains that affect STR typing were assessed. The recovery of STR alleles was influenced more by DNA input amount for amplification rather than DNA degradation, which may be attributed from the high quantity and quality of libraries prepared for MPS run. In addition, the higher success rate of STR typing was achieved using the MPS-STR system compared with a commercial CE-STR system by providing smaller sized fragments for amplification. The results can provide constructive information for the analysis of degraded sample, and this MPS-STR system will contribute in forensic application with regard to skeletal remain sample investigation. 相似文献
10.
Fractal dimension of a carious tooth surface was determined using an electrochemical method. The method was based on time-dependent diffusion towards electrode surfaces, which is one of the most useful and reliable methods for the determination of fractal dimension of electrode surfaces. For this purpose, the tooth was covered with a gold layer, which acted as an electrode in electrochemical experiments. It is suggested that the fractal dimension can be used as a quantitative measure of the state of dental surfaces. The method presented demonstrates the power of electrochemical techniques for the determination of fractal dimension of surface of non-conducting objects. 相似文献
11.
Evaluation of the protective capabilities of nucleosome STRs obtained by large‐scale sequencing
下载免费PDF全文
![点击此处可从《Electrophoresis》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Chunnan Dong Yadong Yang Jiangwei Yan Lihong Fu Xiaojing Zhang Bin Cong Shujin Li 《Electrophoresis》2015,36(14):1640-1650
Partial DNA profiles are often obtained from degraded forensic samples and are hard to analyze and interpret. With in‐depth studies on degraded DNA, an increasing number of forensic scientists have focused on the intrinsic structural properties of DNA. In theory, nucleosomes offer protection to the bound DNA by limiting access to enzymes. In our study, we performed large‐scale DNA sequencing on nucleosome core DNA of human leucocytes. Five nucleosome short tandem repeats (STRs) were selected (including three forensic common STRs (i.e. TPOX, TH01, and D10S1248) and two unpublished STRs (i.e. AC012568.7 and AC007160.3)). We performed a population genetic investigation and forensic genetic statistical analysis of these two unpublished loci on 108 healthy unrelated individuals of the HeBei Han population in China. We estimated the protective capabilities of five selected nucleosome loci and MiniFiler? loci with artificial degraded DNA and case samples. We also analyzed differences between sequencing results and software predicted results. Our findings showed that nucleosome STRs were more likely to be detected than MiniFiler? loci. They were well protected from degradation by nucleosomes and could be candidates for further nucleosome multiplex construction, which would increase the chances of obtaining a better balanced profile with fewer allelic drop‐outs. 相似文献
12.
The goal of this study is to explore the application of epigenetic markers in the identification of biofluids that are commonly found at the crime scene. A series of genetic loci were examined in order to define epigenetic markers that display differential methylation patterns between blood, saliva, semen, and epithelial tissue. Among the different loci tested, we have identified a panel of markers, C20orf117, ZC3H12D, BCAS4, and FGF7, that can be used in the determination of these four tissue types. Since methylation modifications occur at cytosine bases that are immediately followed by guanine bases (CpG sites), methylation levels were measured at CpG sites spanning each marker. Up to 11 samples of each tissue type were collected and subjected to bisulfite modification to convert unmethylated CpG-associated cytosine bases to thymine bases. The bisulfite modified DNA was then amplified via nested PCR using a primer set of which one primer was biotin labeled. Biotinylated PCR products were in turn analyzed and the methylation level at each CpG site was quantitated by pyrosequencing. The percent methylation values at each CpG site were determined and averaged for each tissue type. The results indicated significant methylation differences between the tissue types. The methylation patterns at the ZC3H12D and FGF7 loci differentiated sperm from blood, saliva, and epithelial cells. The C20orf117 locus differentiated blood from sperm, saliva, and epithelial cells and saliva was differentiated from blood, sperm, and epithelial cells at a fourth locus, BCAS4. The results of this study demonstrate the applicability of epigenetic markers as a novel tool for the determination of biofluids using bisulfite modification and pyrosequencing. 相似文献
13.
Jienan Li Lin Lin Bowei Jiang Chudong Wang Moutanou Modeste Judes Zeye Dan Wen Wei He Weifeng Qu Ying Liu Lagabaiyila Zha 《Electrophoresis》2021,42(9-10):1143-1152
DNA genotyping from trace and highly degraded biological samples is one of the most significant challenges of forensic DNA identification. There is a lack of simple and effective methods for genotyping highly degraded samples. In this study, a multiple loci insertion/deletion polymorphisms (Multi-InDels) panel was designed for detecting 18 autosomal Multi-InDels through capillary electrophoresis (CE) with amplicon sizes no longer than 125 bp. Studies of sensitivity, degradation, and species specificity were performed and a population study was carried out using 192 samples from Han populations in Hunan province in the south of China. The combined random match probability (CMP) of these 18 Multi-InDels was 3.23 × 10–12 and the cumulative probability of exclusion (CPE) was 0.9989, suggesting this panel could be used independently for human identification and could provide efficient supporting information for parentage testing. Complete profiles were obtained from as low as 62.5 pg of total input DNA after increasing the number of PCR cycles. Moreover, all alleles were detected from artificially highly degraded DNA after 80 min of boiling water bath treatment. This 18 Multi-InDels panel is simple, fast, and effective for the forensic analysis of highly degraded DNA. 相似文献
14.
The forensic application of the luminol chemiluminescence reaction is reviewed. Luminol has been effectively employed for more than 40 years for the presumptive detection of bloodstains which are hidden from the naked eye at crime scenes and, for this reason, has been considered one of the most important and well-known assays in the field of forensic sciences. This review provides an historical overview of the forensic use of luminol, and the current understanding of the reaction mechanism with particular reference to the catalysis by blood. Operational use of the luminol reaction, including issues with interferences and the effect of the luminol reaction on subsequent serological and DNA testing is also discussed. 相似文献
15.
《Analytical letters》2012,45(15):2625-2633
Abstract A procedure is presented for the determination of donor identity or commonality of origin among paraffinembedded tissues and slides. Samples are de-paraffinized with xylene and ethanol and subjected to ChelexR extraction. The Polymarker forensic DNA typing kit is utilized for identity testing. Following multiplex amplification, PCR product is verified on an agarose gel and then the samples are geiotyped using reverse dot-blot hybridization. When this procedure was applied to paraffin-embedded samples involved in a legal action, all samples were successfully genotyped. The advantages of using this procedure are discussed. 相似文献
16.
Ting Hao Jiangling Guo Jinding Liu Jiaqi Wang Zidong Liu Xiaojuan Cheng Jintao Li Jianbo Ren Zeqin Li Jiangwei Yan Gengqian Zhang 《Electrophoresis》2021,42(11):1255-1261
Age prediction is of great importance for criminal investigation and judicial expertise. DNA methylation status is considered a promising method to infer tissue age by virtue of age-dependent changes on methylation sites. In recent years, forensic scientists have established various models to predict the chronological age of blood, saliva, and semen based on DNA methylation status. However, hair-inferred age has not been studied in the field of forensic science. In this study, we measured the methylation statuses of potential age-related CpG sites by using the multiplex methylation SNaPshot method. A total of 10 CpG sites from the LAG3, SCGN, ELOVL2, KLF14, C1orf132, SLC12A5, GRIA2, and PDE4C genes were found to be tightly associated with age in hair follicles. A correlation coefficient above 0.7 was found for four CpG sites (cg24724428 and Chr6:11044628 in ELOVL2, cg25148589 in GRIA2, and cg07547549 in SLC12A5). Among four age-prediction models, the multiple linear regression model consisting of 10 CpG sites provided the best-fitting results, with a median absolute deviation of 3.68 years. It is feasible to obtain both human identification and age information from a single scalp hair follicle. No significant differences in methylation degree were found between different sexes, hair types, or hair colors. In conclusion, we established a method to evaluate chronological age by assessing DNA methylation status in hair follicles. 相似文献
17.
Brian Young Michael Marciano Karin Crenshaw George Duncan Luigi Armogida Bruce McCord 《Electrophoresis》2021,42(6):756-765
The first autosomal sequence-based allele (aka SNP-STR haplotype) frequency database for forensic massively parallel sequencing (MPS) has been published, thereby removing one of the remaining barriers to implementing MPS in casework. The database was developed using a specific set of flank trim sites. If different trim sites or different kits with different primers are used for casework, then SNP-STR haplotypes may be detected that do not have frequencies in the database. We describe a procedure to address calculation of match probabilities when casework samples are generated using an MPS kit with different trim sites than those present in the relevant population frequency database. The procedure provides a framework for comparison of any MPS kit or database combination while also accommodating comparison of MPS and CE profiles. 相似文献
18.
B. Mile 《Chromatographia》2005,62(1-2):3-9
Chromatographic separation techniques are now widely used to examine the material evidence associated with a crime. Four areas are considered. Analysis of drugs of abuse by GC, GC-MS and GC-FTIR; HPLC; chiral chromatography; capillary electrophoresis (CE) and capillary electrochromatography (CEC); solid-phase microextraction (SPME). The quantitative detection of adulterants and trace pesticides in foods using supercritical fluid extraction (SFE). DNA profiling by separation of fragments by gel and capillary electrophoresis and fluorescence detection. Future developments in automation and miniaturisation and the design of microchips and micro-electrode devices allowing complete analysis in 8 μL cells. 相似文献
19.
《Electrophoresis》2017,38(6):855-868
Short tandem repeat (STR) profiling from DNA samples has long been the bedrock of human identification. The laboratory process is composed of multiple procedures that include quantification, sample dilution, PCR, electrophoresis, and fragment analysis. The end product is a short tandem repeat electropherogram comprised of signal from allele, artifacts, and instrument noise. In order to optimize or alter laboratory protocols, a large number of validation samples must be created at significant expense. As a tool to support that process and to enable the exploration of complex scenarios without costly sample creation, a mechanistic stochastic model that incorporates each of the aforementioned processing features is described herein. The model allows rapid in silico simulation of electropherograms from multicontributor samples and enables detailed investigations of involved scenarios. An implementation of the model that is parameterized by extensive laboratory data is publically available. To illustrate its utility, the model was employed in order to evaluate the effects of sample dilutions, injection time, and cycle number on peak height, and the nature of stutter ratios at low template. We verify the model's findings by comparison with experimentally generated data. 相似文献
20.
建立了荒漠植物总脱氧核糖核酸分子(DNA)的提取方法.荒漠植物叶片加少量交联聚乙烯吡咯烷酮(PVPP粉末)研磨三次以上,得到样品超细粉末.样品粉末迅速加入前处理缓冲液,混匀后低速离心,弃上清留下沉淀物,在沉淀物中加入等体积预热的提取裂解液,混匀后60~70℃温浴1 h.高速离心提取上清液加入纯化液混匀、抽提、离心.再次提取混合液上清,加入预冷的异丙醇,-18℃沉淀DNA 0.5 h以上,异丙醇溶液高速离心,取沉淀用75%乙醇清洗两遍,晾干,加入超纯水溶解.方法具有操作简单和耗时少等优点,操作过程大约2~3 h.DNA损失少,产量高于500 ng/μL.方法提取主要荒漠植物叶片DNA纯度高、完整性好,具有广泛适用性. 相似文献