首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel phosphorus monomer (BDEEP) has been synthesized by allowing phosphorus oxychloride to react with 2-hydroxyethyl acrylate (HEA) and 1,4-Butane diol. Its structure was characterized by Fourier transformed infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). The UV-curing behavior was investigated by FTIR. The combustibility was examined by microscale combustion colorimeter (MCC). The heat release rate (HRR) and heat release capacity (HRC) are 42.1 w/g and 44.0 J/g K, respectively. The thermal degradation was characterized using thermogravimetric analysis/infrared spectrometry (TG-IR). The curve of TGA indicates that there are three characteristic degradation temperature stages for the cured film, which was further characterized by real time Fourier transform infrared (RTFTIR) measurement. It is proposed that the flame retardant action results from decomposition of phosphate to form poly(phosphoric acid), which catalyses the breakage of bonds adjacent to carbonyl groups to form the char, preventing the sample from burning further. The volatilized products formed on thermal degradation of BDEEP indicated that the volatilized products are CO, CO2, water, alkane, carbonyl, phosphorus compounds and aromatic compounds according to the temperature of onset formation.  相似文献   

2.
Poly(2-methacryloxyethyl phenyl phosphate) (PMEPP) was successfully obtained in a two-stage process by the bulk polymerization of 2-methacryloxyethyl phenyl phosphate (MEPP). The flame-retardant properties of PMEPP were studied with limiting oxygen index (LOI) and UL-94 tests, showing that PMEPP with a low flammability can effectively inhibit combustion. The result of energy dispersive spectrometer (EDS) reveals that the condensed-phase protection plays an important role for the flame retardance of PMEPP, because most portion of phosphorus was retained in the char residue. The thermal characteristics of PMEPP were investigated by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The condensed-phase products at various temperatures during the thermal degradation of PMEPP were monitored by Fourier transform infrared (FT-IR) spectroscopy. The volatilized products formed on thermal degradation of PMEPP were characterized by TGA/FT-IR technique, indicating that the volatilized products are phenol, aldehyde RCHO, CO2, CO, water and alkane according to the temperature of onset formation. We propose the possible mechanisms for the thermal degradation of PMEPP in accordance with the analytical results of condensed phase and volatilized products.  相似文献   

3.
A silicon-based acrylate (SHEA) was synthesized via the reaction between 2-hydroxylethyl acrylate and dimethyldichlorosilane, and characterized by Fourier transform infrared (FTIR), 1H NMR spectroscopy and 29Si NMR spectroscopy. The SHEA was blended with phosphorus-containing tri(acryloyloxyethyl) phosphate (TAEP) at different ratios to obtain a series of UV-curable flame retarded resins. The final unsaturation conversion of the SHEA films was determined by FTIR. Their combustion behaviors were examined by microscale combustion calorimetry (MCC). The thermal degradations of TAEP/SHEA composites were characterized using thermogravimetric analysis/infrared spectrometry (TG–IR). The MCC results present that the addition of TAEP into SHEA was able to decrease the HRR, HRC, Tmax and THC. Among the TAEP/SHEA resins, Si1 (TAEP:SHEA is 1:1) owns the highest initial decomposition temperature and leaves the most char residue at 800 °C. The change of chemical structure during the thermal degradation process was monitored by real-time FTIR analysis to study the condensed-phase flame retarded mechanism.  相似文献   

4.
A novel phosphorus monomer (PDHA) has been synthesized through phenyl dichlorophosphate (PDPC) reacting with 2‐hydroxyethyl acrylate (HEA). The structure of PDHA was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). A series of UV curable resins were manufactured by blending PDHA with triglycidyl isocyanurate acrylate (TGICA) at different weight ratios. The fire performance was examined by micro‐scale combustion calorimeter (MCC) and limiting oxygen index (LOI). The results obtained from MCC indicated that the addition of PDHA to TGICA reduced the HRR and HRC. In addition, the LOI values varied from 28 to 34. The char residues of the composites were observed by scanning electron microscopy (SEM). Their thermal degradation behavior was investigated by thermogravimetric analysis and real time FTIR analysis (RT‐FTIR). The test results indicated that when the weight ratio of PDHA/TGICA = 1:1, the onset temperature of the composite was highest and the most char residue at 700°C was observed. RT‐FTIR showed that the phosphate group of PDHA first degraded to form poly(phosphoric acid)s at around 300°C, which had the major contribution to form the compact char to protect the sample from further degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Preparation and thermal properties of a novel flame-retardant coating   总被引:1,自引:0,他引:1  
A novel silicone and phosphate modified acrylate (DGTH) was synthesized and characterized by 1H NMR and FTIR. It was found that DGTH could be cured both by UV radiation and moisture mode with FTIR. The flammability and thermal behavior of the cured film were studied by the limited oxygen index (LOI), thermogravimetric analysis (TG) and real time Fourier transform infrared (RT-FTIR). The LOI value of the cured film is 48 and the TG data shows that the cured film has three characteristic degradation temperature regions, attributing to the decomposition of phosphate and polyurethane to alcohols and isocyanates, thermal pyrolysis of alkyl chains, and decomposition of unstable structures in char, respectively. The RT-FTIR data implies that the degraded products of phosphate form poly(phosphoric acid) further catalyse the breakage of carbonyl groups to form an intumescent char, preventing the samples from further burning.  相似文献   

6.
The hyperbranched polyphosphate acrylate (HPPA) was blended in different ratios with tri(acryloyloxyethyl) phosphate (TAEP) to obtain a series of UV curable intumescent flame retardant resins. The thermal degradation mechanism of their cured films in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The results showed that the addition of HPPA reduced the initial decomposition temperature (Tdi) but increased the char residue. Moreover, the decomposition was considered to be divided into three stages: firstly the degradation of phosphate group, secondly ester group and finally alkyl chain. The morphological structure of the formed char was observed by scanning electron microscopy, demonstrating the formation mechanism of the intumescent charred crust.  相似文献   

7.
The solid reaction products from pyrolysis of polyethylene terephthalate in the presence and absence of red phosphorus were characterized by CP/MAS 13C-NMR, FR-IR, and MAS 31P-NMR spectroscopy. Over the temperature range of 300–400°C, polyethylene terephthalate was converted in a sealed vial to a highly crosslinked polymer of terephthalic acid. Pyrolysis in the presence of red phosphorus, which functions as a flame retardant by increasing the amount of char, yielded an intractible polyaromatic phosphate ester. After thermal cleavage of polyethylene terephthalate with formation of free carboxyl and vinyl ester groups, there are two competing reaction pathways. The smaller molecular weight fragments may enter the vapor phase where they undergo further degradation primarily to CO2, CO, and acetaldehyde, as described by others. However, if volatilization of the oligomeric fragments is inhibited, an alternate reaction pathway gives rise to the formation of highly crosslinked char. Red phosphorus decreases the volatility of the oligomeric fragments by converting them to phosphates and thereby enhances char formation.  相似文献   

8.
Novel biodegradable-cum-crosslinkable polyesters end-capped by biomesogenic units, cinnamic acid (CA) and ferulic acid (FA), were synthesized via chain-growth polycondensation in solid-liquid phase. The chemical structure of synthesized polymers was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). The composition of polyesters, which was calculated by 1H NMR, was in agreement with the feed ratios. The thermal properties and crystallinity of polyesters were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (WXRD) and polarizing-light microscopy (PLM). It was found that the polyesters possessed good crystallinity. Furthermore, the obtained polyesters could be crosslinked with methyl methacrylate (MMA), n-butyl acrylate (BA) and styrene (St) under thermal condition. The crosslinked products possessed degradability in phosphate buffer solution at 37 °C, which might be potentially applied as biomaterials.  相似文献   

9.
A novel flame-retardant silane containing phosphorus and nitrogen, tetramethyl(3-(triethoxysilyl)propylazanediyl) bis(methylene) diphosphonate (TMSAP), is firstly synthesized and then incorporated into poly(methyl methacrylate) (PMMA) matrix through sol–gel method to produce organic–inorganic hybrids. The chemical structure of TMSAP was confirmed by Fourier transform infrared spectra, 1H nuclear magnetic resonance (NMR) and 31P NMR spectra. The hybrids obtained maintain relatively high transparency, and exhibit a significant improvement in thermal properties, mechanical performance and flame retardancy when compared to pure PMMA, including increased glass transition temperature (T g ) by 11.4 °C, increased onset thermal degradation temperature (T0.1) by 82.6 °C, increased half thermal degradation temperature (T0.5) by 42.0 °C, increased hardness, increased limited oxygen index and decreased heat release rate. Morphological studies of hybrids by scanning electron microscopy (SEM) and 29Si MAS NMR suggest that cross-linked silica network is formed in the hybrids and the inorganic silica particles are distributed well in the polymer matrix. Thermal degradation behaviors investigated by thermogravimetric analysis and char structure analysis studied by SEM and X-ray photoelectron spectroscopy demonstrate the catalytic charring function of TMSAP, and synergistic effect between phosphorus, nitrogen and silicon element. The formation of network structure, homogeneous distribution of silica and the char formation during degradation play key roles in these property enhancements. Detailed mechanisms for these enhancements are proposed.  相似文献   

10.
A semi‐bio‐based synergist (N, N′, N″‐1, 3, 5‐triazine‐2, 4, 6‐triyltris‐glycine [TTG]) was prepared by using glycine and cyanuric chloride. The structure of TTG was characterized by 1H NMR and Fourier transform infrared spectroscopy. The TTG was applied in polypropylene (PP)/intumescent flame‐retardant compounds to improve its flame retardancy. The flame‐retardant properties of PP compounds were evaluated by limiting oxygen index and vertical burning tests (UL‐94). The results showed that 17 wt% intumescent flame‐retardant and 1 wt% TTG makes PP achieve the UL‐94 V‐0 rating without drippings, and the limiting oxygen index value is increased to 29.5 vol%. The thermal degradation behavior and char morphology of PP compounds were investigated by thermogravimetric analysis and scanning electron microscopy. The results indicated that TTG accelerates the formation of char layer, regulates the porous structure of char layer, and enhances its barrier property. Therefore, the temperatures of PP compound after two ignitions during the UL‐94 test are decreased significantly as shown in infrared thermal imaging. In addition, the combustion characteristics of PP compounds were investigated by cone calorimeter. The peak of heat release rate (PHRR) of PP compound is 67% reduced, and the tPHRR is delayed from 223 to 430 seconds, indicates that the combustion risk of PP compound is reduced.  相似文献   

11.
The aim of this study is to evaluate the thermal stability and thermal degradation behavior of an epoxy network based on bisphenol A modified with silver sulfathiazole and crosslinked with ethylenediamine. The sample was studied by thermogravimetric analysis coupled with differential scanning calorimetry over a range of temperature between 30 and 600 °C in N2 atmosphere and using heating rates of 5, 10, 15 and 20 °C min−1. The kinetic parameters of thermal degradation process were calculated. Fourier transforms infrared spectroscopy and mass spectroscopy coupled to thermogravimetry was used to identify the volatile products resulting from the degradation of the network. The study showed that the sample is stable up to temperatures exceeding 290 °C. The major degradation volatile products identified were: ammonia, water, carbon dioxide and compounds with aromatic structure such as bisphenol A and its degradation products.  相似文献   

12.
A novel epoxy-terminated hyperbranched polyphosphate (E-HBPP) was synthesized by employing an A2 + B3 polycondensation and characterized by FTIR, 1H NMR and GPC. E-HBPP was used as a reactive-type flame retardant for diglycidyl ether of bisphenol-A/m-phenylene diamine (DGEBA/mPDA) system. A series of flame retardant resins were prepared and their flame retardancy was monitored by the limiting oxygen index (LOI). The results showed that the LOI value of the cured samples and the degree of expansion of the formed char after burning increased along with the E-HBPP content. Their thermal degradation behaviors were investigated by thermogravimetric analysis and in situ FTIR and showed that the phosphate group of E-HBPP first degraded to form poly(phosphoric acid)s at around 300 °C, which had a major contribution to form the compact char to protect the sample from further degradation. The dynamic mechanical thermal properties were studied by dynamic mechanical thermal analysis (DMTA) and the results showed a good miscibility between E-HBPP and DGEBA. The mechanical properties of the cured films were also investigated. Less than 20% E-HBPP addition improved both the tensile strength and elongation at break.  相似文献   

13.
The thermal oxidative degradation of cellulose, and of cellulose ammonium phosphate and its metal complexes products were studied by thermal analysis, infrared spectroscopy and elemental analysis. The temperature of decomposition was lower for metal complexes of cellulose ammonium phosphate than those samples untreated by metal ions and the values of char yield were greater for treated cellulose than those untreated. This indicates the metal ions can catalyze the reaction of degradation and form more char. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

15.
16.
A novel flame retardant (4‐diphenylphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene (PPPZ) was prepared and characterized by FT‐IR, 31P‐NMR and 1H‐NMR spectroscopy. Polyurethanes that contained aromatic phosphate groups attached to cyclotriphosphazene, with various phosphorus contents, were prepared from PPPZ, poly(propylene glycol), 1,4‐butanediol, and 2,4‐toluene diisocyanate by one‐step polymerization. The polymers prepared were characterized by FT‐IR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and oxygen index (LOI) measurements. The effect of the concentration of PPPZ on the thermal behavior of the polyurethane was studied. The results indicated that the glass transition temperature (Tg) of the polyurethane increased with the concentration of PPPZ. The PPPZ‐containing polyurethanes exhibited slightly higher temperatures of degradation and higher char yields than PPPZ‐free polyurethanes. Moreover, the LOI of the polyurethanes increased with increasing PPPZ content. Also studied was the possible mechanism of the flame retardancy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

18.
New monolithic and transparent hybrid gels were obtained by reaction at room temperature of polymethylhydrosiloxane (PMHS) with 1,3,5-trihydroxybenzene (DO1,3,5) and 2-hydroxybenzoic acid (DO2), in tetrahydrofuran, using hexachloroplatinic acid (H2PtCl6·6H2O) as catalyst. The products have been characterized by infrared and 29Si MAS-NMR spectroscopy. The results show that the organic compounds have reacted with the PMHS, leading to monolithic and transparent gels in which organic-inorganic bridges were formed. An appropriate thermal treatment procedure was determined from TGA and DTA curves recorded on the hybrid gel powder after drying at 70 °C. The morphology and structure of the materials obtained were studied by scanning electronic microscopy (SEM) and X-ray powder diffraction (XRD).  相似文献   

19.
A novel hydroxyl‐ethynyl‐arene (HEA) resin was synthesized via Aldol condensation and Sonogashira reaction. The structure of the obtained resin was confirmed by the techniques of mass spectroscopy (MS), gel permeation chromatography (GPC), proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, (FT‐IR) and elemental analysis (EA). Differential scanning calorimetry (DSC) results showed an exotherm at the temperature range of 187°C–245°C, attributable to crosslinking reaction of the acetylene groups. After thermal cure, the obtained cured resin possessed excellent thermal stability. Thermal gravimetric analysis (TGA) in nitrogen showed the Td5 (temperature of 5% weight loss) was about 400°C, and the char yield in nitrogen was about 78% at 900°C. The laminate composite of HEA resin was prepared and its mechanical and thermal properties were determined. The usefulness of the HEA resin as matrix for ablative composite was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A monomer, acryloxyethyl phenoxy phosphorodiethyl amidate (AEPPA), was synthesized and characterized using Fourier transform infrared (FTIR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and 31P NMR. The copolymer with various amounts of styrene (St) was obtained by the free radical bulk polymerization between AEPPA and St, and characterized using 1H NMR. The thermal properties of the copolymers were investigated with thermogravimetric analysis (TGA) in air and nitrogen atmosphere, and differential scanning calorimetry (DSC). The TGA results in air indicated the copolymers with AEPPA show higher thermal stability than those without AEPPA. However, the TGA results in nitrogen showed that the decomposition temperature decreased and the char residue increased with the increase of AEPPA. The glass transition temperature (Tg) of the copolymers from DSC indicated that a inverse proportion was observed between Tg and the amount of AEPPA incorporated. The flammability of the copolymers was evaluated by microscale combustion calorimeter (MCC). The MCC results showed that AEPPA can decrease the peak heat release rate (PHRR) and the heat release capacity (HRC), and the sample CP10 shows the lowest PHRR and HRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号