首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters ranging from 10 to 200 μm in size have been used. 2,5-Dihydroxybenzoic acid (DHB) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) have been tested as matrices. The threshold (for ion detection) is higher and the dependence of the ion signal upon higher-than-threshold fluences is stronger for directly desorbed ions than for photoionized neutral molecules. Directly desorbed analyte ions exhibit the same dependence on fluence as the matrix ions with only minor differences between the two matrices tested, so both have approximately the same detection threshold. For both ions and photoionized neutral molecules, the fluence threshold increases with decreasing spot size while the slope of the intensity/fluence curves decreases. A quasi-thermal, sublimation/desportion model was found to describe the experimental results with excellent precision. For a complete explanation, non-equilibrium effects had to be taken into account.  相似文献   

2.
The quantity and size distribution of micrometer-sized particles ejected from thin films of glycerol were measured using light scattering particle sizing. Thin glycerol films were irradiated at atmospheric pressure with an infrared optical parametric oscillator at wavelengths between 2.95 and 3.1 microm. Particulate material resulting from the ablation was sampled directly into a particle-sizing instrument and particles with diameters greater than 500 nm were detected and sized by light scattering. The fluence threshold for particle formation was between 2000 and 3000 J/m2 for all laser wavelengths. At threshold, fewer than 100 particles/cm3 were detected and this value increased to several thousand particles/cm3 at twice the threshold fluence. The average size of the coarse particles ranged from 900 nm to 1.6 microm at threshold and decreased by 10-20% at twice the threshold fluence. The coarse particle formation observations were compared with ion formation behavior in matrix-assisted laser desorption ionization and interpreted in terms of a photomechanical mechanism for material ablation and ion formation.  相似文献   

3.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

4.
Phenomenological models were proposed to explain the experimentally observed dependence of protein ion yields with laser fluence in matrix-assisted laser desorption. Assuming that the illuminating laser had a Gaussian intensity profile at the sample being examined, it was possible to fit the experimental points with a model that only assumes a fluence threshold for ion production. No additional dependence of protein ion yield on illuminating fluence above the threshold value was necessary to explain the data.  相似文献   

5.
The grazing incidence surface-induced dissociation (GI-SID) of various protonated peptides with typical kinetic energies of 350 eV was investigated. Peptide ions were generated by matrix-assisted laser desorption/ionization (MALDI) using delayed extraction. The collision target surfaces used were aluminum and a liquid film of perfluorinated hydrocarbons. All peptides studied in these experiments showed enhanced fragment ion yields at grazing incidence (GI-SID effect) as observed in our former experiments with other precursor ion types. In general the GI-SID spectra exhibit N-terminal a(1)-type fragment ions, immonium ions and side-chain fragment ions in the low mass-to-charge region. Fragment ion series of the peptide backbone were not observed, which are typical and abundant in the spectra of established fragmentation techniques like collision-induced dissociation, MALDI post-source decay or surface-induced dissociation at steeper angles. The potential of the GI-SID process to yield useful information for primary structure determination of peptides is indicated by the observed differences in the GI-SID spectra of the isomeric dipeptides LR and IR.  相似文献   

6.
The role of the laser pulse duration in matrix-assisted laser desorption/ionization mass spectrometry with infrared lasers (IR-MALDI-MS) emitting in the 3 microm wavelength range has been evaluated. Mass spectrometric performance and characteristics of the IR-MALDI process were examined by comparing a wavelength-tuneable mid-infrared optical parametric oscillator (OPO) laser of 6 ns pulse duration, tuned to wavelengths of 2.79 and 2.94 microm, with an Er:YAG laser (lambda = 2.94 microm) with two pulse durations of 100 and 185 ns, and an Er:YSGG laser (lambda = 2.79 microm) with a pulse duration of 75 ns. Threshold fluences for the desorption of cytochrome C ions were determined as a function of the laser pulse duration for various common IR-MALDI matrices. For the majority of these matrices a reduction in threshold fluence by a factor of 1.2-1.9 was found by going from the 75-100 ns long pulses of the Erbium lasers to the short 6 ns OPO pulse. Within the experimental accuracy threshold fluences were equal for the 100 and the 185 ns pulse duration of the Er:YAG laser. Some pronounced pulse duration effects related to the ion formation from a glycerol matrix were also observed. The effect of the laser pulse length on the duration of ion emission was furthermore investigated.  相似文献   

7.
We gauged the internal energy transfer for two dissociative ion decomposition channels in matrix-assisted laser desorption ionization (MALDI) using the benzyltriphenylphosphonium (BTP) thermometer ion [PhCH 2PPh 3] (+). Common MALDI matrixes [alpha-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5-dihydroxycinnamic acid (DHB)] were studied with nitrogen laser (4 ns pulse length) and mode-locked 3 x omega Nd:YAG laser (22 ps pulse length) excitation. Despite the higher fluence required to initiate fragmentation, BTP ions indicated lower internal energy transfer with the picosecond laser in all three matrixes. These differences can be rationalized in terms of phase explosion induced by the nanosecond laser vs a stress-confinement-driven desorption mechanism for the picosecond laser. For the two ion production channels of the BTP thermometer ion, breaking a single bond can result in the formation of benzyl/tropylium ions, F1, or triphenylphosphine ions, F2. In SA and DHB, as well as in CHCA at low fluence levels, the efficiency of these channels (expressed by the branching ratio I F1/ I F2) is moderately in favor of producing tropylium ions, 1 < I F1/ I F2 < 6. As the laser fluence is increased, for CHCA, there is a dramatic shift in favor of the tropylium ion production, with I F1/ I F2 approximately 30 for the nanosecond and the picosecond laser, respectively. This change is correlated with the sudden increase in the BTP internal energies in CHCA in the same laser fluence range. The large changes observed in internal energy deposition for CHCA with laser fluence can account for its ability to induce fragmentation in peptides more readily than SA and DHB.  相似文献   

8.
Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter.  相似文献   

9.
Benzyl-substituted benzylpyridinium (BP) chloride salts were used as a source of thermometer ions to probe the internal energy (IE) transfer in desorption/ionization on porous silicon (DIOS). To modify their wetting properties and the interaction energies with the thermometer ions, the DIOS surfaces were silylated to produce trimethylsilyl- (TMS), amine- (NH2), perfluoroalkyl- (PFA), and perfluorophenyl-derivatized (PFP) surfaces. Two laser sources--a nitrogen laser with pulse length of 4 ns and a mode locked 3 x omega Nd:YAG laser with a pulse length of 22 ps--were utilized to induce desorption/ionization and fragmentation at various laser fluence levels. The corresponding survival yields were determined as indicators of the IE transfer and the IE distributions were extracted. In most cases, with increasing the laser fluence in a broad range (approximately 20 mJ/cm2), no change in IE transfer was observed. For ns excitation, this was in remarkable contrast with MALDI, where increasing the laser fluence resulted in sharply (within approximately 5 mJ/cm2) declining survival yields. Derivatization of the porous silicon surface did not affect the survival yields significantly but had a discernible effect on the threshold fluence for ion production. The IE distributions determined for DIOS and MALDI from alpha-cyano-4-hydroxycinnamic acid reveal that the mean IE value is always lower for the latter. Using the ps laser, the IE distribution is always narrower for DIOS, whereas for ns laser excitation the width depends on surface modification. Most of the differences between MALDI and DIOS described here are compatible with the different dimensionality of the plume expansion and the differences in the activation energy of desorption due to surface modifications.  相似文献   

10.
The effect of the (initial) sample temperature on the threshold laser fluences and the increase of signal intensities with laser fluence has been investigated for UV-laser desorbed 2,5-dihydroxybenzoic acid (DHB) ions and (photoionized) neutral DHB molecules using a ‘flat-top’ laser profile for desorption. A linear increase in threshold fluence with decreasing temperature was observed for neutrally desorbed molecules as well as ions in the investigated temperature range of approximately − 100°C to + 20°C. The results are discussed and interpreted in the framework of a quasi-thermal desorption model (IJMSIP 141 (1995) 127–148).  相似文献   

11.
The elimination of carbon monoxide and water from a series of protonated dipeptides, [XxxYyy + H](+), is investigated by tandem mass spectrometry experiments and density functional theory. The combined results show that CO loss occurs on the a(1)-y(1) pathway, which begins by rearrangement of the added proton to the amide N-atom and creates the proton-bound dimer of an amino acid (Yyy) and an imine (that from Xxx residue). The loss of H(2)O is initiated from a tautomer in which the added proton has migrated to the hydroxyl group of the C-terminus, thereby promoting the formation of an ion with protonated oxazolone structure (a nominal b(2) ion). The highest yields of [XxxYyy + H - CO](+) and [XxxYyy + H - H(2)O](+) are observed at threshold energies. As the internal energy of the protonated dipeptides increases, these primary products are depleted by consecutive dissociations yielding mostly backbone fragments. Specifically, [XxxYyy + H - CO](+) decomposes to y(1) (protonated Yyy) and a(1) (immonium ion of Xxx residue), while [XxxYyy + H - H(2)O](+) produces a(2) and the immonium ions of residues Xxx (a(1)) and Yyy ("internal" immonium ion). Water loss takes place more efficiently when the more basic residue is at the C-terminal position. Increasing the basicity of the N-terminal residue enhances the extent of CO versus H(2)O loss and introduces the competitive elimination of NH(3). The dissociations leading to eliminations of small neutrals (CO, H(2)O, etc.) generally proceed over transition states that lie higher in energy than the corresponding dissociation products. The excess energy is disposed of either in translational or rovibrational modes of the products, depending on the stability of the incipient noncovalent assemblies emerging during the cleavage of the small neutrals.  相似文献   

12.
The fragmentation of positive ions of DNA under the conditions of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was investigated by post-source decay (PSD) analysis and hydrogen/deuterium (H/D) exchange. Spectra of five different synthetic 4mer oligonucleotides were recorded. As a main result the hypothesis was confirmed that for these ions all fragment ions result from processes, initiated by protonation/deuteration of a suitable base followed by a loss of this base as a neutral or ion and further backbone cleavages. The three bases adenine, guanine, and cytosine all exhibit comparable lability for fragmentation. The spectra show evidence for an interaction of the adenine base with the phosphate backbone. Signals of fragments containing TT- and CT-cycloadducts were observed in the spectra.  相似文献   

13.
A simultaneous laser-induced plasma spectrometry/laser ionization mass spectrometry experiment has been used to follow the ion and photon intensity in laser plasmas generated over pure metallic targets as a function of fluence. The excitation conditions have been chosen to cover the range from low fluence levels, where surface desorption and thermoemission are the common processes, to the high fluence regime, characterized by plasma formation. The fluence thresholds for ion formation and plasma formation have been calculated. The dependence of both processes with melting temperature has been demonstrated.  相似文献   

14.
The initial kinetic energy distribution of [Arg]-vasopressin molecular ions generated by matrix-assisted UV laser desorption/ionization was measured using a delayed ion extraction, linear time-of-flight mass spectrometer. Energy distributions of the nicotinic acid matrix ions, with or without the presence of peptide, were also measured. These were compared with the kinetic energy distribution of gramicidin-S ions using IR laser desorption. The measured molecular ion kinetic energy distribution from vasopressin is much broader than that from gramicidin-S, and is characterized by a high-energy tail that most likely results from entrainment of anlayte ions in the higher velocity matrix ions and fragments as they leave the surface.  相似文献   

15.
Laser-induced desorption/ionization from silicon nanowires (SiNW) is an emerging method for mass spectrometry of small to medium-size molecules. In this new technique, we examined the internal energy transfer to seven benzylpyridinium thermometer ions and extracted the corresponding internal energy distributions. To explore the effect of the energy-deposition rate on the internal energy transfer, two lasers with significantly different pulse lengths (4 ns vs 22 ps) were utilized as excitation sources. A comparison of ion yields indicated that the SiNW substrates required 5-8 times less laser fluence for ion production than either matrix-assisted laser desorption/ionization (MALDI) or desorption/ionization on silicon (DIOS). In contrast however, the survival yield (SY) values showed that the internal energy transferred to the thermometer ions was more than (ps laser) or comparable to (ns laser) MALDI but it was significantly less than in DIOS. The internal energy transfer was only slightly dependent on laser fluence and on wire density. These effects were rationalized in terms of the confinement of thermal energy in the nanowires and of unimpeded three-dimensional plume expansion. Unlike in MALDI from CHCA and in perfluorophenyl-derivatized DIOS, for desorption from SiNWs the effect of laser pulse length on the internal energy transfer was found to be negligible.  相似文献   

16.
[M + Cu]+ peptide ions formed by matrix-assisted laser desorption/ionization from direct desorption off a copper sample stage have sufficient internal energy to undergo metastable ion dissociation in a time-of-flight mass spectrometer. On the basis of fragmentation chemistry of peptides containing an N-terminal arginine, we propose the primary Cu+ ion binding site is the N-terminal arginine with Cu+ binding to the guanidine group of arginine and the N-terminal amine. The principal decay products of [M + Cu]+ peptide ions containing an N-terminal arginine are [a(n) + Cu - H]+ and [b(n) + Cu - H]+ fragments. We show evidence to suggest that [a(n) + Cu - H]+ fragment ions are formed by elimination of CO from [b(n) + Cu - H]+ ions and by direct backbone cleavage. We conclude that Cu+ ionizes the peptide by attaching to the N-terminal arginine residue; however, fragmentation occurs remote from the Cu+ ion attachment site involving metal ion promoted deprotonation to generate a new site of protonation. That is, the fragmentation reactions of [M + Cu]+ ions can be described in terms of a "mobile proton" model. Furthermore, proline residues that are adjacent to the N-terminal arginine do not inhibit formation of [b(n) + Cu - H]+ ion, whereas proline residues that are distant to the charge carrying arginine inhibit formation of [b(n) + Cu - H]+ ions. An unusual fragment ion, [c(n) + Cu + H]+, is also observed for peptides containing lysine, glutamine, or asparagine in close proximity to the Cu+ carrying N-terminal arginine. Mechanisms for formation of this fragment ion are also proposed.  相似文献   

17.
Some selected drugs including captopril, fudosteine and racecadotril have been analyzed by infrared (IR) laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The molecular ions of captopril and racecadotril are exclusively observed without any fragments at near threshold single-photon ionization (SPI). However, fudosteine easily forms fragments even at a photon energy near the ionization threshold, indicating the instability of its molecular ion. For these drugs, a number of fragments are yielded with the increase of photon energy. The structures of such fragments proposed by IR LD/VUV PIMS are supported by electron ionization time-of-flight mass spectrometry (EI-TOFMS) results. Fragmentation pathways are discussed in detail.  相似文献   

18.
The influence of incident laser parameters on sensitivity in matrix-assisted laser desorption/ionization (MALDI) has been investigated using orthogonal-injection time-of-flight (TOF) instruments. A qualitative comparison was first made between the beam profiles obtained with a N(2) laser and a Nd:YAG laser using 2-m long optical fibers. The N(2) laser gives better sensitivity, consistent with a more uniform fluence distribution and therefore better coverage of the N(2) laser profile. Most of the difference disappears when a 30-m long fiber is used or when the fibers are twisted during irradiation to smooth out the fluence distribution. In more systematic measurements, the total integrated ion yield from a single spot (a measure of sensitivity) was found to increase rapidly with fluence to a maximum, and then saturate or decrease slightly. Thus, the optimum sensitivity is achieved at high fluence. For a fluence near threshold, the integrated yield has a steep (cubic) dependence on the spot size, but the yield saturates at higher fluence for smaller spots. The area dependence is much weaker (close to linear) for fluence values above saturation, with the result that the highest integrated yields per unit area are obtained with the smallest spot sizes. The results have particular relevance for imaging MALDI, where sensitivity and spatial resolution are important figures of merit. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A quantitative model of primary ionization in ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) is presented. It includes not only photochemical processes such as exciton pooling, but also the effects of the desorption event. The interplay of these two is found to be a crucial aspect of the MALDI process. The desorbing plume is modeled as an adiabatic expansion with entrained clusters. The parameters in the model are defined as much as possible via experiment or by analogy with known effects. The model was applied to the matrix 2,5-dihydroxybenzoic acid and found to reproduce the fluence dependence of the fluorescence yield and key features of the picosecond two-pulse ion generation efficiency curves. In addition, the model correctly predicts a fluence rather than irradiance threshold, the magnitude of the threshold, the magnitude of the ion yield, laser wavelength effects, plume temperatures, plume expansion velocities and the spot size effect.  相似文献   

20.
The excitation of UV-absorbing MALDI matrixes with visible laser (532 nm wavelength) and the desorption/ionization of biomolecules were performed by coating the analytes doped matrix with Au thin film (5–10 nm) using ion sputtering deposition. The Au film was first ablated with the laser of higher fluence, resulting in a crater/hole about the size of the laser beam spot on the target. After a few initial laser shots, analytes and matrix related ions were observed from the crater even at lower laser fluence. Electron microscopy inspection on the laser ablated region revealed the formation of nanoparticles with sizes ranging from <10 to 50 nm. Compared with the infra-red laser (1064 nm) excitation, the visible laser produced much higher abundance of matrix radical ions, and less heating effect as measured by the thermometer molecules. The results suggest the photo-excitation and photo-ionization of matrix molecules by the visible laser, possibly assisted by the gold nanoparticles and nanostructures left on the ablated crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号