首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hybrid diamond/sp2-C nanostructures have aroused growing interests in electrochemistry currently owing to the good chemical/physical properties, including high electrical conductivity, mechanical robustness, and high specific surface area, as well as the unique electrochemical properties, namely, an enhanced electrochemical activity while retaining a wide potential window and low background currents when properly engineering the microstructure. This mini-review presents the recent electrochemistry process of diamond/sp2-C nanostructures. In particular, the synthetic methods, microstructures, and possible growth mechanism of diamond/sp2-C nanostructures are briefly summarized. Then, the electrochemical property tailoring is addressed in detail, and subsequently, their potential applications in electrochemistry including electrochemical sensors, supercapacitors, electrocatalysis, and other applications are discussed. The future perspectives of diamond/sp2-C nanostructures in electrochemistry finally conclude this review.  相似文献   

2.
The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.  相似文献   

3.
Conductive polyaniline (PANI) was electropolymerized on undoped 100 nm diamond powders in sulphuric acid solution containing aniline to improve the conductivity and the electrochemistry of the nano- or submicro-scaled diamond particles. Cyclic voltammetry (CV) experiment was carried out at an upper potential of 1.1 V in initial sweeps and a potential range of ?0.2–0.9 V for the growth of PANI on a diamond powder electrode. Field emission-scanning electron microscope (FESEM) result reveals that the diamond particles were well coated by PANI films with globular or fibroid surface morphology. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were employed to investigate the electrochemical properties of the PANI/diamond composite electrode. It presents lower resistance and better capacitance than the pristine diamond powder.  相似文献   

4.
Over the past years, great attention has been given to the developments of boron-doped diamond (BDD) materials in various fields because of the advantages of electrochemical features, such as large potential range and low background current. This minireview aims to present the recent progress of in situ electrochemical spectroscopy for BDD electrode reactions. After a concise state of the widely used in situ electrochemical spectroscopy techniques, including in situ electrochemical Raman, infrared, and electron paramagnetic resonance spectroscopy, the current progress of BDD electrode reactions using in situ electrochemical spectroscopy has been summarized. Finally, challenges and perspectives for the tendency of the BDD study via in situ electrochemistry are provided, of which several potential electrochemical combined technologies relating to the mechanism exploration of BDD are proposed.  相似文献   

5.
Effects of crystal structure on the electrochemistry of boron-doped high-temperature-high-pressure diamond single crystals grown from an Ni–Fe–C–B melt are studied. On the {111}, {100}, and {311} faces, the linear and nonlinear electrochemical impedance spectra and the electrochemical kinetics in the Fe(CN)6 3_/4_ redox system are measured. The acceptor concentration in the diamond interior adjacent to these faces was determined from the Mott–Schottky plots and the amplitude-demodulation measurements. It varies in the 1018 to 1021 cm–3 range. The difference in the electrochemical behavior of individual crystal faces is primarily attributed to different boron acceptor concentrations in the growth sectors associated with the faces.  相似文献   

6.
Thin-film boron-doped diamond (BDD) electrochemistry has made a tremendous progress in electrochemical synthesis/recovery of high-added value products from aqueous and gaseous waste streams. The distinguished electrochemical characteristic of this electrode has made this material emerging and successfully used in electrosynthetic transformations, besides its destructive and powerful performance in disinfection and detoxification of wastewaters. Organic electrosynthesis is achieved by the oxyl radical oxidation formed at BDD, peroxo compounds electrosynthesis is attained by oxidation of corresponding anions at the BDD surface, whereas electrochemical conversion of SO2, CO2, NO3?, and NH3 to value-added products occurs by BDD cathodic reduction process. There are still some challenges needed to address for seamless scale-up and translation into application of this future technology.  相似文献   

7.
Carbonaceous materials are widely used in electrochemistry. All allotropic forms of carbons??graphite, glassy carbon, amorphous carbon, fullerenes, nanotubes, and doped diamond??are used as important electrode materials in all fields of modern electrochemistry. Examples include graphite and amorphous carbons as anode materials in high-energy density rechargeable Li batteries, porous carbon electrodes in sensors and fuel cells, nano-amorphous carbon as a conducting agent in many kinds of composite electrodes (e.g., cathodes based on intercalation inorganic host materials for batteries), glassy carbon and doped diamond as stable robust and high stability electrode materials for all aspects of basic electrochemical studies, and more. Amorphous carbons can be activated to form very high specific surface area (yet stable) electrode materials which can be used for electrostatic energy storage and conversion [electrical double-layer capacitors (EDLC)] and separation techniques based on electro-adsorption, such as water desalination by capacitive de-ionization (CDI). Apart from the many practical aspects of activated carbon electrodes, there are many highly interesting and important basic aspects related to their study, including transport phenomena, molecular sieving behavior, correlation between electrochemical behavior and surface chemistry, and more. In this article, we review several important aspects related to these electrode materials, in a time perspective (past, present, and future), with the emphasis on their importance to EDLC devices and CDI processes.  相似文献   

8.
An emerging research field in electrochemistry today is the preparation, characterization and application of diamond microelectrodes for electroanalytical measurements in biological media. Interest in this new electrode material stems from its outstanding properties: (i) hardness, (ii) low, stable and pH-independent background current, (iii) morphological and microstructural stability over a wide range of potentials, (iv) good electrochemical responsiveness for multiple redox analytes without any conventional pre-treatment and (v) weak molecular adsorption of polar molecules that leads to a high level of resistance to response deactivation and electrode fouling. Diamond electrodes have advanced in recent years from being simply a scientific curiosity into a viable material for electroanalysis. In this article, we highlight the current state of progress by our laboratory and others on the preparation, study of the basic electrochemical properties, and application of this new type of microelectrode for in vitro electroanalytical measurements, and discuss some of the remaining challenges.  相似文献   

9.
Single-entity electrochemistry focusing on the study of transient electrochemical process at the confined interface, has become a promising field that addresses questions from multi-disciplines such as cellular biology, material chemistry, organic chemistry, etc. It offers the fruitful information hidden in bulk electrochemical measurements. As the optical techniques improve in spatial and temporal resolution, the combination of electrochemistry with optical microspectroscopy provides more comprehensive information of single-entity electrochemistry. Herein, we review recent progress made in optical–electrochemical measurements covering three aspects from the precise localization and temperature measurements of single compartments, to the in-situ tracking of dynamic behaviors of single nanoparticles in electrochemical process, and to the monitoring confinement-controlled electrochemistry at the single molecule/ion level. The review demonstrates how these optical methods are innovatively integrated with single-entity sensing. It also reveals how these optical–electrochemical combinations push single-entity electrochemistry forward.  相似文献   

10.
Ensemble averaging measurements obscure the link between the electrochemical performance and the specific properties of an individual because of the interplay of inhomogeneity and heterogeneity. Nanocollision electrochemistry has attracted increasing interest because of its extremely high sensitivity, revealing the intrinsic properties of individual entities that are masked in the traditional ensemble measurements. In this perspective review, we summarized the recent developments in nanocollision-based single entity electrochemistry and photoelectrochemistry, the combined nanocollision electrochemistry with the other complementary techniques, as well as accurate data process. In closing, future challenges, opportunities, and destinations related to nanocollison electrochemistry were discussed.  相似文献   

11.
Direct electrochemistry of hemoglobin (Hb) was observed at glassy carbon electrode (GCE) modified with undoped nanocrystalline diamond (UND) and Hb multilayer films via layer-by-layer assembly. UV-VIS absorbance spectroscopy, electrochemical impedance spectroscopy and cyclic voltammograms were employed to characterize the film. The results showed that the UND had the effect of enhancing the electron transfer between Hb and the electrode surface. Hb in the multilayer films maintained its bioactivity and structure. It also exhibited a good catalytic activity towards the reduction of H(2)O(2). The reciprocal of catalytic current showed a linear dependence on the reciprocal of H(2)O(2) concentration ranging from 0.5 microM to 0.25 mM with a detection limit of 0.4 microM. The apparent Michaelis-Menten constant was estimated to be 0.019 mM.  相似文献   

12.
This review addresses recent developments in electrochemistry and electroanalytical chemistry of carbon nanotubes (CNTs). CNTs have been proved to possess unique electronic, chemical and structural features that make them very attractive for electrochemical studies and electrochemical applications. For example, the structural and electronic properties of the CNTs endow them with distinct electrocatalytic activities and capabilities for facilitating direct electrochemistry of proteins and enzymes from other kinds of carbon materials. These striking electrochemical properties of the CNTs pave the way to CNT-based bioelectrochemistry and to bioelectronic nanodevices, such as electrochemical sensors and biosensors. The electrochemistry and bioelectrochemistry of the CNTs are summarized and discussed, along with some common methods for CNT electrode preparation and some recent advances in the rational functionalization of the CNTs for electroanalytical applications.  相似文献   

13.
We have investigated the formation of self-assembled monolayers (SAMs) of 4'-nitro-1,1-biphenyl-4-diazonium tetrafluoroborate (NBD) onto ultrananocrystalline diamond (UNCD) thin films. In contrast to the common approach to modify diamond and diamond-like substrates by electrografting, the SAM was formed from the saturated solution of NBD in acetonitrile by pure chemical grafting. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and near edge X-ray absorption fine structure spectroscopy (NEXAFS) have been used to verify the direct covalent attachment of the 4'-nitro-1,1-biphenyl (NB) SAM on the diamond substrate via stable C-C bonds and to estimate the monolayer packing density. The results confirm the presence of a very stable, homogeneous and dense monolayer. Additionally, the terminal nitro group of the NB SAM can be readily converted into an amino group by X-ray irradiation as well as electrochemistry. This opens the possibility of in situ electrochemical modification as well as the creation of chemical patterns (chemical lithography) in the SAM on UNCD substrates and enables a variety of consecutive chemical functionalization for sensing and molecular electronics applications.  相似文献   

14.
The evolution of a new branch of science, the membrane electrochemistry, is considered. The new discipline emerged at the junction of the science of membranes, classic electrochemistry, biophysics, and ion exchange. The most important stages in its progress are analyzed. Major attention is devoted to the development of electrodialysis with ion-exchange membranes, as this method makes it possible to produce fresh water from brackish water and ultrapure water from drinking water, separate ion mixtures, and run electrochemical syntheses.  相似文献   

15.
金刚石薄膜电化学   总被引:7,自引:0,他引:7  
金刚石由于其特殊的物理与化学性质,早在几百年前就吸引了人们对它的关注.化学气相沉积(chemical vapor deposition,CVD)法制备的高掺杂硼复合多晶金刚石薄膜,为金刚石薄膜在电化学中的应用开辟了新的领域.作为新型碳素电极材料,高掺杂硼复合多晶金刚石薄膜具有许多目前使用的电极材料所不可比拟的优异特性如:宽电化学势窗,低残留电流,极好的电化学稳定性以及表面不易被污染等.本文综述了高掺杂硼复合多晶金刚石薄膜电极在电化学中的几个重要应用,包括电分析、电合成及电化学法处理废水等.  相似文献   

16.
电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法,常用仪器为具有多功能的电化学工作站. 详细介绍了宽频介电谱仪的电化学工作站功能,包括其仪器结构组成、仪器原理、先进的功能应用及仪器本身独特优势.  相似文献   

17.
汪的华  陈政 《电化学》2005,11(2):119-124
简要介绍近3年武汉大学电化学研究中心在熔盐电化学方面的若干研究进展:1)熔盐电解固态化合物制备单质硅及其合金以及无机功能材料;2)适于高温熔盐的全密封长寿命Ag/AgCl参比电极和可负载微量粉末的金属腔(坑)工作电极新技术;3)“三相界线电化学”新概念以及描述三相界线在薄层固态化合物电解还原过程中扩展变化的薄层模型.  相似文献   

18.
19.
Depending on the doping level, diamond exhibits properties of either a semiconductor or a semimetal. Heavily doped “metallic” diamond was found to be a corrosion-resistant electrode, suitable for electrochemical syntheses and analyses. The advantages of synthetic diamond in electroanalytical chemistry are its corrosion resistance, good reproducibility of electrochemical properties, low background currents, and selectivity to a number of reactions used to develop electroanalytical methods. Presented at the V All-Russian Conference with the Participation of CIS Countries on Electrochemical Methods of Analysis (EMA-99), Moscow, December 6–8, 1999.  相似文献   

20.
固相微萃取是一种新型的萃取分离技术. 由于它具有富集能力强、分析速度快、操作简便及便于现场分析和仪器联用等优点,成为痕量物质分离检测分析的重要工具. 固相微萃取技术的核心是固相微萃取纤维. 总结了固相微萃取纤维在稳定性、使用寿命及选择性方面的一些特点,并综述了近年来在这些方面所进行的研究工作及发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号