首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas-solid fluidized beds are widely considered as nonlinear and chaotic dynamic systems. Pressure fluc- tuations were measured in a fluidized bed of 0.15 m in diameter and were analyzed using multiple approaches: discrete Fourier transform (DFT), discrete wavelet transform (DWT), and nonlinear recur- rence quantification analysis (RQA). Three different methods proposed that the complex dynamics of a fluidized bed system can be presented as macro, meso and micro structures. It was found from DFT and DWT that a minimum in wide band energy with an increase in the velocity corresponds to the transition between macro structures and finer structures of the fluidization system. Corresponding transition veloc- ity occurs at gas velocities of 0.3, 0.5 and 0.6 m]s for sands with mean diameters of 150, 280 and 490/~m, respectively. DFT, DWT, and RQA could determine frequency range of0-3.125 Hz for macro, 3. ! 25-50 Hz for meso, and 50-200 Hz for micro structures. The RQA showed that the micro structures have the least periodicity and consequently their determinism and laminarity are the lowest. The results show that a combination of DFT, DWT, and RQA can be used as an effective approach to characterize multi-scale flow behavior in gas-solid fluidized beds.  相似文献   

2.
Most hydrodynamic fluidized bed models,including CFD codes,neglect any effects of the plenum chamber volume.Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects on fluidized bed hydrodynamics for FCC and glass particles.Two low-pressure-drop distributors were used,one with a single orifice,and the other with 33 orifices and the same total open area as the single orifice.The results show two peaks in the frequency spectra for the single-orifice distributor,...  相似文献   

3.
This article presents further experimental results of the Magnetization-LAST mode in magnetically assisted gas-fluidized tapered beds, including external transverse magnetic field control of solid phase movement, central channel formation, spout depth and the pressure drop across the bed. Phase diagrams similar to those recently reported for the Magnetization-FIRST mode were also developed. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number pertinent to particle aggregate formation was applied to develop the scaling relationships.  相似文献   

4.
5.
A non-intrusive vibration monitoring technique was used to study the hydrodynamics of a gas–solid fluidized bed. Experiments were carried out in a 15 cm diameter fluidized bed using 226, 470 and 700 μm sand particles at various gas velocities, covering both bubbling and turbulent regimes. Auto correlation function, mutual information function, Hurst exponent analysis and power spectral density function were used to analyze the fluidized bed hydrodynamics near the transition point from bubbling to turbulent fluidization regimes. The first pass of the autocorrelation function from one half and the time delay at which it becomes zero, and also the first minimum of the mutual information, occur at a higher time delay in comparison to stochastic systems, and the values of time delays were maximum at the bubbling to turbulent transition gas velocity. The maximum value of Hurst exponent of macro structure occurred at the onset of regime transition from bubbling to turbulent. Further increase in gas velocity after that regime transition velocity causes a decrease in the Hurst exponent of macro structure because of breakage of large bubbles to small ones. The results showed these methods are capable of detecting the regime transition from bubbling to turbulent fluidization conditions using vibration signals.  相似文献   

6.
The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to deve...  相似文献   

7.
An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.  相似文献   

8.
9.
Collision between particles plays an important role in determining the hydrodynamic characteristics of gas-solid flow in a fluidized bed.In the present work,earlier work(Loha,Chattopadhyay. Chatterjee,2013) was extended to study the effect of the elasticity of particle collision on the hydrodynamic behavior of a bubbling fluidized bed filled with 530-μm particles.The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics of the bubbling fluidized bed.where the solid-phase properties were calculated by applying the kinetic theory of granular flow.To investigate the effect of the elasticity of particle collision,different values of the coefficient of restitution were applied in the simulation and their effects were studied in detail.Simulations were performed for two different solid-phase wall boundary conditions.No bubble formation was observed for perfectly elastic collision.The bubble formation started as soon as the coefficient of restitution was set below 1.0,and the space occupied by bubbles in the bed increased with a decrease in the coefficient of restitution.Simulation results were also compared with experimental data available in the literature,and good agreement was found for coefficients of restitution of 0.95 and 0.99.  相似文献   

10.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

11.
This paper is devoted to outlining precisely the basic mathematics of a classical isoperimetric problem of the calculus of variations and showing how significant fluid mechanical problems in fluidization and spouting can be addressed using this approach.  相似文献   

12.
The fluidization behavior of ZnO nano-particles in magnetic fluidized bed (MFB) by adding coarse magnetic particles was investigated, followed by the co-fluidization of mixtures of ZnO and SiO2 nano-particles. For such co-fluidization, bed expansion was found to change smoothly with gas velocity through a range of stable operation. By measuring the bed expansion ratio and pressure drop, a stability diagram for the mixture in MFB was obtained. Within this stable operation range, with increasing gas velocity the pressure drop hardly changes as the bed expands, up to an expansion ratio of more than 4.  相似文献   

13.
The fluid dynamics behavior of shallow fluidized and vibrofluidized beds operating with fresh leaves was investigated with the aim of exploring drying applications in a modified conveyor belt (MCB) system,which may be operated in a fixedor fluidized-bed mode.Leaves of the specimens Duranta repens,Schinus molle,Coleus barbatus,Buxus sempervirens,and Bougainvillea spectabilis were tested with a range of sphericities from 0.063 to 0.213,bulk densities from 0.038 to 0.251 g/cm 3,apparent densities from 0.52 to ...  相似文献   

14.
15.
Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given, Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions.  相似文献   

16.
17.
18.
19.
Interaction of nanoparticles (NPs) with cell membrane is a crucial issue in studying drug delivery, photodynamic therapy system and cytotoxicity. Single NP with relatively small size cannot be fully wrapped by the cell membrane, which prohibits its uptake. One feasible way is cooperative entry, i.e., recruiting and assembling multiple small NPs to form a larger NP cluster to enter into a cell. In this work, we present theoretical analysis about the cooperative entry of multiple NPs. Through free energy calculation we investigate how the NPs׳ size, shape, interval and NP/cell interfacial binding energy influence the feasibility of entry. Interestingly we find that the cooperative entry of oblate ellipsoidal NPs can get larger energy compensation than individual ones as well as spherical ones. We also propose that soft NPs have preference in cooperative entry of the cell. Our work can be used to actively design and transfer NPs in applications such as drug delivery as well as to understand the shape effect on toxic mechanism of ellipsoidal NPs.  相似文献   

20.
This work aims to understand the effect of nanoparticle-enzyme interactions and how such interactions affect starch based soil removal. Silica and laponite are used as the model nanoparticles, and s-amylase is employed as the model enzyme. The results show that, if the nanoparticles and enzyme are added simultaneously, laponite enhances the enzyme performance toward starch soil removal, whereas silica imposes a small effect on the enzymatic activity towards the same soil substrates. However, when nanoparticles are added first, the enzyme activity is not affected much by laponite but is hindered significantly by silica nanoparticles. Furthermore, sequential addition of the enzyme followed by silica nanoparticles improves soil removal. Electron microscopic analyses, measurements of the enzyme activity in suspen- sions of nanoparticles, and particle size characterisation suggest that dense coverage of soil surface by the silica nanoparticles be likely a mechanism for the experimentally observed hindrance of soil removal when silica nanoparticles are added before enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号