首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids–gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30 μm; particle density 2300 kg/m3; loose-poured bulk density 700 kg/m3) and white powder (median particle diameter 55 μm; particle density 1600 kg/m3; loose-poured bulk density 620 kg/m3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s). This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctuation and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

2.
Fine particles play a significant role in many industrial processes.To study the dynamic behavior of fine particle and their deposition in rock fractures,the pneumatic conveying of fine particles(approximately100 μm in diameter) through a small-scale horizontal slit(0.41 m × 0.025 m) was studied,which is useful for the sealing technology of underground gas drainage in coal mining production.The CFD-DEM method was adopted to model the gas-particle two-phase flow;the gas phase was treated as a continuum and modeled using computational fluid dynamics(CFD),particle motion and collisions were simulated using the DEM code.Then,the bulk movement of fine particles through a small-scale horizontal slit was explored numerically,and the flow patterns were further investigated by visual inspection.The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities.For intermediate gas velocities,the flow patterns showed pulsation phenomena,and dune flow reappeared in the tail section.Moreover,periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity.The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings,which were obtained by video-imaging experiments.Furthermore,the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings,and the results showed good agreement.Furthermore,the particle velocity vectors and voidage distribution were numerically simulated.Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

3.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

4.
Flow characterization of high-pressure dense-phase pneumatic conveying of coal powder is not fully understood. To further reveal the dynamic behavior of coal particles in dense-phase pneumatic conveying pipelines, a method for the scale decomposition of particle motion based on empirical mode decomposition and Hurst analysis of experimental electrostatic signals is reported. This allows the multi-scale motion characteristics of single coal particles and particle clusters to be determined. Micro-, meso-, and macro-scale subsets were reconstructed, which reflected the different behaviors of the coal particles: specifically, dynamic features of the micro-scale subset represented features of single particle collisions and frictional interactions; dual fractal characteristics of the meso-scale subset described the motion of coal particle clusters; and features of the macro-scale subset reflected persistent dynamic behavior of the entire pneumatic conveying system. Motion behavior of single particles and particle clusters could be respectively investigated by considering the relative energies of the micro- and meso-scale contributions to the electrostatic signal. This was verified both by theoretical analysis and experiment.  相似文献   

5.
This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l~m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models.  相似文献   

6.
The gas/solid flow regime of dense-phase pneumatic conveying of pulverized coal under a pressure of 4.0 MPa in horizontal pipeline 10 mm in diameter, is monitored by electrical capacitance tomography (ECT) using 8 electrodes. To improve the accuracy of the capacitance measurement, an AC-based single-channel capacitance measuring circuit was developed, and a modified iterative Landweber algorithm was used to reconstruct the image. A two-fluid model based on the kinetic theory of granular flow was used to study the three-dimensional steady-state flow behavior of dense-phase pneumatic conveying of pulverized coal.  相似文献   

7.
Flow regime diagrams for gas-solid fluidization and upward transport   总被引:9,自引:0,他引:9  
Flow regime maps are presented for gas-solids fluidized beds and gas-solids upward transport lines. For conventional gas solids fluidization, the flow regimes include the fixed bed, bubbling fluidization, slugging fluidization and turbulent fluidization. For gas solids vertical transport operation, solids flux must be incorporated in the flow regime diagrams. The flow regimes then include dilute-phase transport, fast fluidization or turbulent flow, slug/bubbly flow, bubble-free dense-phase flow and packed bed flow. In practical circulating fluidized beds and transport risers, operation below the fast fluidization regime is commonly impossible due to equipment limitations. Practical flow regime maps are proposed with the flow regimes, including homogeneous dilute-phase flow, core-annular dilute-phase flow (where there are appreciable lateral gradients but small axial gradients) and fast fluidization (where there are both lateral and axial gradients). The boundary between fast fluidization and dilute-phase pneumatic transport is set by the type A choking velocity, at which the uniform suspension collapses and particles start to accumulate in the bottom region of the transport line, while the mechanism of transition from fast fluidization to dense-phase flow depends on the column and particle diameters.  相似文献   

8.
Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall.  相似文献   

9.
Pneumatic conveying of coarse coal particles with various pipeline configurations and swirling intensities was investigated using a coupled computational fluid dynamics and discrete element method. A particle cluster agglomerated by the parallel-bond method was modeled to analyze the breakage of coarse coal particles. The numerical parameters, simulation conditions, and simulation results were experimentally validated. On analyzing total energy variation in the agglomerate during the breakage process, the results showed that downward fluctuation of the total particle energy was correlated with particle and wall collisions, and particle breakage showed a positive correlation with the energy difference. The correlation between the total energy variation of a particle cluster and particle breakage was also analyzed. Particle integrity presented a fluctuating upward trend with pipe bend radius and increased with swirling number for most bend radii. The degree of particle breakage differed with pipeline bending direction and swirling intensity: in a horizontal bend, the bend radius and swirling intensity dominated the total energy variations; these effects were not observed in a vertical bend. The total energy of the particle cluster exiting a bend was generally positively correlated with the bend radius for all conditions and was independent of bending direction.  相似文献   

10.
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.  相似文献   

11.
12.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

13.
在水平T型分支管道中,用压缩空气对平均粒径为0.5mm砂石进行气固两相流试验。试验结果表明,当压缩空气的流速大于33m/s时,T型分支接头处没有固相沉积,两个分支管路分配的流量几乎相同。当压缩空气的流速小于33m/s时,分支接头处出现沉积,并且沉积量和分支管路的流量分配与分支管路上阀门开度有关:开度相同时,分支接头两侧的固相沉积量和流量分配相同;开度不同时,阀门开度小的一侧分支接头处的沉积量少,其分配的流量也少。  相似文献   

14.
The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.  相似文献   

15.
Swirl stabilized flows are the most widely deployed technology used to stabilize gas turbine combustion systems. However, there are some coherent structures that appear in these flows close to the nozzle whose occurrence and stability are still poorly understood during transition. The external recirculation zone and the Precessing Vortex Core to/from the Coanda effect are some of them. Thus, in this paper the transition of an Open Jet Flow-Medium Swirl flow pattern to/from a Coanda jet flow is studied using various geometries at a fixed Swirl number. Phase Locked Stereo Particle Image Velocimetry and High Speed Photography experiments were conducted to determine fundamental characteristics of the phenomenon. It was observed that the coherent structures in the field experience a complete annihilation during transition, with no dependency between the structures formed in each of the flow states. Moreover, transition occurs at a particular normalized step size whilst some acoustic shifts in the frequencies of the system were noticed, a phenomenon related to the strength of the vortical structures and vortices convection. It is concluded that a transient, precessing, Coanda Vortex Breakdown is formed, changing flow dynamics. The structure progresses to a less coherent Trapped Vortex between the two states. During the phenomenon there are different interactions between structures such as the Central Recirculation Zone, the High Momentum Flow Region and the Precessing Vortex Core that were also documented.  相似文献   

16.
The dynamic response of a swirling flow undergoing vortex breakdown is investigated via Large Eddy Simulation (LES) and experiments in a water flow facility. The investigation is carried out following previous work on the link between thermoacoustic combustion instabilities and coherent structures in lean premixed gas turbine combustors. The velocity field transfer function is obtained in LES from the Unit Impulse Response determined via application of a low intensity broadband noise perturbation of the inflow mass flow rate and the Wiener-Hopf filtering method. In the experiments, harmonic fluctuations in the water flow rate through the swirler are generated via a piston mounted on the side wall of the test facility and activated with a low frequency linear motor. The velocity field transfer function is then obtained via phase averaging applied to Particle Image Velocimetry snapshots which are collected at prescribed values of the harmonic phase. The analysis, which is carried out in terms of coherent structures identified via Proper Orthogonal Decomposition, gives numerical transfer functions with amplitude and phase consistent with the experimental ones.  相似文献   

17.
Topology and brush thickness of turbulent premixed V-shaped flames were investigated using Mie scattering and Particle Image Velocimetry techniques. Mean bulk flow velocities of 4.0, 6.2, and 8.3 m/s along with two fuel-air equivalence ratios of 0.6 and 0.7 were tested in the experiments. Using a novel experimental turbulence generating apparatus, three turbulence intensities of approximately 2 %, 6 %, and 17 % were tested in the experiments. The results show that topology of the flame front is significantly altered by changing the turbulence intensity. Specifically, at relatively small turbulence intensities, the flame fronts feature wrinkles which are symmetric with respect to the vertical axis. At moderate values of turbulence intensities, the flame fronts form cusps. The formation of cusps is more pronounced at large mean bulk flow velocities. The results associated with relatively large turbulence intensity show that flame surfaces feature: mushroom-shaped structures, freely propagating sub-flames, pocket formation, localized extinction, and horn-shaped structures. Analysis of the results show that the flame brush thickness follows a linear correlation with the root-mean-square of the flame front position. The correlation is in agreement with the results of past experimental investigations associated with moderately turbulent premixed V-shaped flames, and holds for the range of turbulence conditions tested. This suggests that the underlying mechanism associated with the dynamics of moderately turbulent premixed V-shaped flames proposed in past studies can potentially be valid for the the wide range of turbulence conditions examined in the present investigation.  相似文献   

18.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

19.
Mind the gap: a new insight into the tip leakage vortex using stereo-PIV   总被引:2,自引:0,他引:2  
The tip leakage vortex (TLV), which develops in the clearance between the rotor and the stator of axial hydro turbines, has been studied for decades. Yet, many associated phenomena are still not understood. For instance, it remains unclear how the clearance size is related to the occurrence of cavitation in the vortex, which can lead to severe erosion. Experiments are here carried out on the influence of the clearance size on the tip vortex structure in a simplified case study. A NACA0009 hydrofoil is used as a generic blade in a water tunnel while the clearance between the blade tip and the wall is varied. The 3D velocity fields are measured using Stereo Particle Image Velocimetry (SPIV) in three planes located downstream of the hydrofoil for different values of the upstream velocity, the incidence angle and a large number of tip clearances. The influence of the flow conditions on the structure of the TLV is described through changes in the vortex intensity, core axial flow, vortex center position and wandering motion amplitude. Moreover, high-speed visualizations are used to highlight the vortex core trajectory and clearance flow alteration, turning into a wall jet as the tip clearance is reduced. The measurements clearly reveal the existence of a specific tip clearance for which the vortex strength is maximum and most prone to generating cavitation.  相似文献   

20.
Particle image velocimetry with optical flow   总被引:4,自引:0,他引:4  
 An optical Flow technique based on the use of Dynamic Programming has been applied to Particle Image Velocimetry thus yielding a significant increase in the accuracy and spatial resolution of the velocity field. Results are presented for calibrated synthetic sequences of images and for sequences of real images taken for a thermally driven flow of water with a freezing front. The accuracy remains better than 0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame for four-image sequences, even with a 10% added noise level and allowing 10% of particles of appear or disappear. A velocity vector is obtained for every pixel of the image. Received: 18 July 1997/Accepted: 5 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号