首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow characteristics of high-temperature flue gas are important in the heat transfer of coal-water slurry (CWS) combustion furnaces. The flow field of a 250 kg/h vertical-type slag tap cyclone furnace was non-intrusively investigated, using two-dimensional particle-image velocimetry (2D PIV). The method was verified using traceable fly ash particles in high-temperature flue gas. The flow field of the flue gas was analyzed with a time-averaged method, based on which the effects of excess air ratio and loading were investigated. The flue gas separated by a gas separator maintained good rigidity near the furnace wall, rather than eroding the heating surface. Numerical simulations validated the reliability of PIV under the actual circumstances within the furnace. This study provides guidelines for applying 2D PIV in analyzing flue gas in thermal test boilers.  相似文献   

2.
An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl intensity on the flow and combustion characteristics. First, stream lines and velocity distribution in the flow field were obtained using PIV (Particle Image Velocimetry) method in a model burner. In contrast with the axial flow without swirl, highly swirled air induced streamlines going along the burner tile, and its backward flow was generated by recirculation in the center zone of the flow field. In the combustion, the flame shape with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure was examined by measuring OH and CH radicals intensity and by calculating Damkohler number (Da) and turbulence Reynolds number (Re T ). It appeared that luminescence intensity decreased at higher swirl number due to the recirculated flue gas, and the flat flames were comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the flue gas widely contacted on the flame front, and decreased the flame temperature and emissions concentration as thermal NO. The homogeneous temperature field due to the widely flat flame was obtained, and the RMS in the high temperature region was rather lower at higher swirl number. Consequently, the stable flat flame with low NO concentration was achieved.  相似文献   

3.
The stratification of two fluid phases, namely gas and liquid, within flow distribution devices, such as headers, that have side or bottom oriented fluid pipe connections, or discharges, has shown relevance to loss-of-coolant accidents in nuclear power plants. Under critical conditions the gas phase could entrain into the predominantly liquid discharge flow causing the fluid quality to be dramatically affected. This condition is referred to as the onset of gas entrainment (OGE) phenomenon and it occurs at a specific critical liquid height which changes with the Froude number. The liquid velocity field at the OGE is of importance, for example, to theorists who may find a semi-empirical approach to model this phenomenon. Stereoscopic particle image velocimetry (PIV) technique is an excellent candidate for non-intrusively investigating the velocity field. The liquid-phase velocity field was investigated for three discharge Froude numbers at the OGE. It was found that the stereoscopic PIV could be used to extract the velocity field experimentally, yet a high degree of error was found in the region closest to the discharge. The relative error was determined through conservation of mass by comparing the flow rate obtained with the PIV data to that obtained using a flow meter. In summary it was found that the number of image planes used, the resolution of the image planes, and consequently the number of vectors used to calculate the flow rate, all contributed a great deal to the relative error.  相似文献   

4.
The advantages of 3D measurement techniques and the accuracy of the backward projection algorithm are discussed. The 3D calibration reconstruction used is based on an analytical relation between real and image co-ordinates. The accuracy of the stereoscopic particle image velocimetry (PIV) system is assessed by taking measurements of the flow in angular displacement configuration with prisms. A comparison is made with 2D PIV measurements and the accuracy of this stereo PIV algorithm is evaluated. By using this 3D measurement technique, the topology and the main 3D features of the flow around a surface-mounted block are investigated.  相似文献   

5.
Evaluation of aero-optical distortion effects in PIV   总被引:1,自引:0,他引:1  
Aero-optical distortion effects on the accuracy of particle image velocimetry (PIV) are investigated. When the illuminated particles are observed through a medium that is optically inhomogeneous due to flow compressibility, the resulting particle image pattern is subjected to deformation and blur. In relation to PIV two forms of error can be identified: position error and velocity error. In this paper a model is presented that describes these errors and particle image blur in relation to the refractive index field of the flow. In the case of 2D flows the model equations can be simplified and, furthermore, the background oriented schlieren technique (BOS) can be applied as a means to assess and correct for the optical error in PIV. The model describing the optical distortion is validated by both computer simulation and real experiments of 2D flows. Two flow features are considered: one with optical distortion normal to the velocity (shear layer) and one with optical distortion in the direction of the flow (expansion fan). Both simulation and experiments demonstrate that the major source for the velocity error is the second derivative of the refractive index in the direction of the velocity vector. The aero-optical distortion effect is less critical for shearing interfaces in comparison with compression/expansion fronts, the most critical case being represented by shock waves. Based on the results from the simulated experiments, it is concluded that for the 2D flow case the BOS method allows a measurement of the mean velocity error in PIV and can reduce it to a large extent.  相似文献   

6.
This paper presents an experimental analysis of the unsteady phenomena developing in a vaneless diffuser of a radial flow pump. Partial flow operating conditions were investigated using 2D/3C high repetition rate PIV, coupled with unsteady pressure transducers. Pressure measurements were acquired on the shroud wall of the vaneless diffuser and on the suction pipe of the pump, whereas PIV flow fields were determined on three different heights in the hub to shroud direction, inside the diffuser. The classical Fourier analysis was applied to both pressure signals to identify the spectral characteristics of the developing instabilities, and the high-order spectral analysis was exploited to investigate possible non-linear interaction mechanisms between different unsteady structures. A dedicated PIV averaging procedure was developed and applied to the PIV flow fields so as to capture and visualize the topology of the spectrally identified phenomena. The influence of these phenomena on the diffuser efficiency was also investigated.  相似文献   

7.
由空压机提供的气体通过—排微小直径的喷嘴进入静止水体,形成水气两相流流场。在单相PIV和PTV技术的基础上,研究稀疏气液两相流情况下气泡的速度场分布。PIV算法采用快速傅立叶互相关分析法,而PTV算法需要获得每幅图像中每个气泡的形心,根据连续图像中的粒子对,计算速度。用PIV和PTV两种算法处理求出气泡的速度并对两种方法进行比较,其最终研究成果可应用于流体及多相流的流量测技术,提高我们进行低密度气液两相流相关研究的测量水平。同时为水气两相流的数值分析和理论研究提供流场测试的数据。  相似文献   

8.
Improved understanding of in-cylinder flows requires knowledge from well-resolved experimental velocimetry measurements and flow simulation modeling. Engine simulations using large eddy simulations (LES) are making large progress and the need for well documented velocimetry measurements for model validation is high. This work presents velocimetry measurements from PIV, high-speed PIV, stereoscopic PIV, and tomographic PIV to extensively describe the in-cylinder flow field in a motored optical engine operating at 800 RPM. These measurements also establish a comprehensive database designed for LES model development and validation. Details of the engine, engine accessory components, and well-controlled boundary conditions and engine operation are presented. The first two statistical moments of the flow field are computed and show excellent agreement among the PIV database. Analysis of statistical moments based on limited sample size is presented and is important for modeling validation purposes. High-speed PIV resolved the instantaneous flow field throughout entire engine cycles (i.e. 719 consecutive crank-angles), while tomographic PIV images are further used to investigate the 3D flow field and identify regions of strong vortical structures identified by the Q-criterion. Principle velocity gradient components are computed and emphasize the need to resolve similar spatial scales between experimental and modeling efforts for suitable model validation.  相似文献   

9.
In hemodynamics, the inherent intermittency of two-phase cellular-level flow has received little attention. Unsteadiness is reported and quantified for the first time in the literature using a combination of fluorescent dye labeling, time-resolved scanning confocal microscopy, and micro-particle image velocimetry (μPIV). The near-wall red blood cell (RBC) motion of physiologic high-hematocrit blood in a rectangular microchannel was investigated under pressure-driven flow. Intermittent flow was associated with (1) the stretching of RBCs as they passed through RBC clusters with twisting motions; (2) external flow through local obstacles; and (3) transitionary rouleaux formations. Velocity profiles are presented for these cases. Unsteady flow clustered in local regions. Extra-cellular fluid flow generated by individual RBCs was examined using submicron fluorescent microspheres. The capabilities of confocal μPIV post-processing were verified using synthetic raw PIV data for validation. Cellular interactions and oscillating velocity profiles are presented, and 3D data are made available for computational model validation.  相似文献   

10.
This paper discusses the role of the gas injection pattern on the large scale structures in a homogeneous pseudo-2D bubble column operated at relatively high gas hold-ups up to 8%. Seven cases with different inlet configuration have been studied experimentally by Harteveld et al. Each of these cases has been simulated using a (parallel) Euler–Lagrange model developed by Darmana et al. The presence of coherent structures for both uniform and non-uniform gas injection is studied. Furthermore, the influence of the gas injection pattern on the dynamics is investigated, while the statistical (average and fluctuating) quantities are compared with the PIV/PTV and LDA measurement data of Harteveld et al. The results show that the model resembles the observed experimental flow structures to a large extent.  相似文献   

11.
This study is part of an ongoing effort to improve the understanding of mechanisms that control the spread of fires with a focus on the turbulent flow modified by the flame front. A large-scale PIV system was used to measure the flow field inside and in the vicinity of a flame front spreading across a bed of fuel in an open environment. The vegetative fuel consisted of a 10-m-long and 5-m-wide bed of excelsior (1?kg/m2 fuel load) leading to a nearly 1.5-m-high flame front. The velocity field was investigated in a measurement region about 1.5?m high and 2?m long. In such a configuration, a 450-mJ laser source was used to generate the light sheet, and the flow was seeded using zirconium oxide particles (ZrO2). The PIV measurements in the presence of flame were improved by the use of a liquid crystal shutter in front of the PIV camera, allowing very short exposure times and eliminating the flame trace in the tomographic pictures. Despite the variability of the external conditions, leading to a difficult seeding over the whole PIV area, the present study shows the feasibility of the optical method of fluid visualization in the field. The measurements of the velocity fields show some features of the dynamics of fire plumes. This preliminary study demonstrates the feasibility of the method in the open, but some strong efforts to improve the seeding of the flow must be made.  相似文献   

12.
We present the application of wavefront sensing to particle image velocimetry for three-component (3C), three-dimensional (3D) flow measurement from a single view. The technique is based upon measuring the wavefront scattered by a tracer particle and from that wavefront the 3D tracer location can be determined. Hence, from a temporally resolved sequence of 3D particle locations the velocity vector field is obtained. Two approaches to capture the data required to measure the wavefronts are described: multi-planar imaging using a distorted diffraction grating and an anamorphic technique. Both techniques are optically efficient, robust and compatible with coherent and incoherent scattering from flow tracers. The depth (range) resolution and repeatability have been quantified experimentally using a single mode fiber source representing a tracer particle. The anamorphic approach is shown to have the greatest measurement range and hence was selected for the first proof of principle experiments using this technique for 3D particle imaging velocimetry (PIV) on a sparsely seeded gas phase flow.  相似文献   

13.
This paper describes a novel derivative of the PIV method for measuring the velocity fields of droplets and gas phases simultaneously using fluorescence images rather than Mie scattering images. Two-phase PIV allows the simultaneous and independent velocity field measurement of the liquid phase droplets and ambient gas in the case of two-phase flow mixing. For phase discrimination, each phase is labelled by a different fluorescent dye: the gas phase is seeded with small liquid droplets, tagged by an efficient fluorescent dye while the droplets of the liquid phases are tagged by a different fluorescent dye. For each phase, the wavelength shift of fluorescence is used to separate fluorescence from Mie scattering and to distinguish between the fluorescence of each phase. With the use of two cross-correlation PIV cameras and adequate optical filters, we obtain two double frame images, one for each phase. Thus standard PIV or PTV algorithms are used to obtain the simultaneous and independent velocity fields of the two phases. Because the two-phase PIV technique relies on the ability to produce two simultaneous and independent images of the two phases, the choice of the labelling dyes and of the associated optical filter sets is relevant for the image acquisition. Thus a spectroscopic study has been carried out to choose the optimal fluorescent dyes and the associated optical filters. The method has been evaluated in a simple two-phase flow: droplets of 30–40 μm diameter, produced by an ultrasonic nozzle are injected into a gas coflow seeded with small particles. Some initial results have been obtained which demonstrate the potential of the method.  相似文献   

14.
Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three dimensional flows with 2D PIV, there is inherent measurement error due to out-of-plane motion. Errors in the measured velocity field propagate to turbulence statistics. Since this can distort the overall flow characteristics, it is important to understand the effect of this out-of-plane error. In this study, the effect of out-of-plane motion on turbulence statistics is quantified. Using forced isotropic turbulence direct numerical simulation (DNS) flow field data provided by the Johns Hopkins turbulence database (JHTDB), synthetic image tests are performed. Turbulence statistics such as turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlations are calculated. Various test cases were simulated while controlling three main parameters which affect the out-of-plane motion: PIV interrogation window size, camera inter-frame time, and laser sheet thickness. The amount of out-of-plane motion was first quantified, and then the error variation according to these parameters was examined. This information can be useful when examining fully three dimensional flows such as homogeneous and isotropic turbulence via 2D PIV.  相似文献   

15.
Ironmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas–solid flow in an oxygen blast furnace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (SIG) flowrate to total gas flowrate on the SIG penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.  相似文献   

16.
In an experimental investigation, the stochastic dynamics of the global mode in a turbulent swirling jet are considered. From the application of the swirling jet in gas turbine combustors, it was observed that a specific density gradient in the flow leads to a suppression of the global mode. This phenomenon was replicated in a generic swirling jet using an electrical heating coil placed inside the breakdown bubble. In the present investigation, the dynamics of the global mode obtained from PIV and pressure measurements are analysed using a stochastic reduced-order model to describe the instability. The stochastic model is necessary to explain the interaction between the deterministic dynamics of the global mode and the perturbations by the background turbulence. The calibration of the stochastic model provides the amplification rate of the global mode that defines the transition of the flow, dependent on the swirling strength and the density difference. The spatial structure of the global mode is further investigated from Lagrangian coherent structures of the flow field which are computed from the 3D time-resolved velocity field reconstruction based on planar PIV measurements. The Lagrangian visualisations and schlieren visualisations are used to explain the absence of the density effects on the global mode at larger Reynolds numbers. The analysis gives a detailed view of the stochastic dynamics of a hydrodynamic instability in a turbulent flow.  相似文献   

17.
A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods. Received: 11 July 2000 / Accepted: 21 June 2001 Published online: 29 November 2001  相似文献   

18.
A method is proposed that allows three-dimensional (3D) two-component measurements to be made by means of particle image velocimetry (PIV) in any volume illuminated over a finite thickness. The method is based on decomposing the cross-correlation function into various contributions at different depths. Because the technique is based on 3D decomposition of the correlation function and not reconstruction of particle images, there is no limit to particle seeding density as experienced by 3D particle tracking algorithms such as defocusing PIV and tomographic PIV. Correlations from different depths are differentiated by the variation in point spread function of the lens used to image the measurement volume over that range of depths. A number of examples are demonstrated by use of synthetic images which simulate micro-PIV (μPIV) experiments. These examples vary from the trivial case of Couette flow (linear variation of one velocity component over depth) to a general case where both velocity components vary by different complex functions over the depth. A final validation—the measurement of a parabolic velocity profile over the depth of a microchannel flow—is presented. The same method could also be applied using a thick light sheet in macro-scale PIV and in a stereo configuration for 3D three-component PIV.  相似文献   

19.
在Fluent软件中应用RNG $k$-$\varepsilon$湍流模型及流体体积函数(VOF)对座便器内部三维湍流流动进行了雷诺平均N-S方程的数值模拟,得到了座便器内流场三维流动形态,研究了座便器虹吸管内流动规律,分析了虹吸管形状对流速分布、压力分布及虹吸性能的影响,以三维湍流场的分析结果为依据,实现了座便器虹吸管道的优化设计. 通过PIV测试数据验证了三维湍流数值模拟结果的准确性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号