首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction. The increasingly used monolithic reactor, in contrast, has many operational advantages; however, for a kinetically-controlled reaction, it does not contain sufficient catalyst to sustain the reaction. To address the problems associated with both randomly packed-bed reactor and the monolithic reactor, a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor. Their respective performances were compared when applied to the exothermic reaction of the isopropanol–acetone–hydrogen chemical heat pump system. The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity, and had a lower radial temperature gradient, indicating that this reactor had a higher effective heat conductivity. Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points.  相似文献   

2.
Acetone hydrogenation in a fixed bed reactor packed with spherical catalyst particles was simulated to study the effects of inlet gas velocity and particle diameter on hydrogenation reaction. Computational results show that the catalyst particles in the reactor are almost isothermal, and the high isopropanol concentration appears at the lee of the particles. With the increase of inlet velocity, the outlet isopropanol mole fraction decreases, and the total pressure drop increases drastically. Small diameter catalyst particles are favorable for acetone hydrogenation, but result in large pressure drop.  相似文献   

3.
A physicochemical and fluid dynamic model is formulated for the numerical simulation of the flow field in a reactor for titanium dioxide production, the turbulence motion is described by theKε equation, the governing equations are solved by the SIMPLER algorithm devised by Partankar and Spalding. The velocity, tmperature and concentration fields are obtained for three cases: A) with chemical reaction and thermal insulation on the walls; B) with chemical reaction and wall temperature is 450K; C) without chemical reaction and thermal insulation on the walls, and the physicochemical numerical simulation for the titanium dioxide production has been done. The results of the paper can be used as a theoretical guide for the engineers in the design of such reactors.  相似文献   

4.
Accurate prediction of frost characteristics has crucial influence on designing effective heat exchangers. In this paper, a new CFD (Computational Fluid Dynamics) model has been proposed to predict the frost behaviour. The initial period of frost formation can be predicted and the influence of surface structure can be considered. The numerical simulations have been carried out to investigate the performance of fin-and-tube heat exchanger under frost condition. The results have been validated by comparison of simulations with the data computed by empirical formulas. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air side has been analysed as well. In addition, the influence factors have also been discussed, such as fin pitch, relative humidity, air flow rate and evaporating temperature of refrigerant.  相似文献   

5.
The use of natural gas (instead of liquid or solid fuels) is nowadays drawing an increasing interest in many applications (gas turbines, boilers, internal combustion engines), because of the greater attention to environmental issues. To facilitate the development of these applications, computer models are being developed to simulate gaseous injection, air entrainment and the ensuing combustion. This paper introduces a new method for modelling the injection process of gaseous fuels that aims to hold down grid requirements in order to allow the simulation also of other phenomena, like combustion or valve and piston motion, in reciprocating internal combustion engines. After a short overview of existing models, the transient jet model and the evaluation of inflow conditions are described in detail. Then a basic study of the grid effects on the jet evolution is presented. The model is updated and validated by comparing numerical results with available experimental data for two different operating conditions: a subsonic and a supersonic under‐expanded case. The model demonstrates to be fast enough to be used in a multi‐dimensional code and accurate enough to follow the real gas jet evolution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号