首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Size-reduction systems have been extensively used in industry for many years. Nevertheless, reliable engineering tools to be used to predict the comminution of particles are scarce. Computational fluid dynamics(CFD)–discrete element model(DEM) numerical simulation may be used to predict such a complex phenomenon and therefore establish a proper design and optimization model for comminution systems.They may also be used to predict attrition in systems where particle attrition is significant. Therefore,empirical comminution functions(which are applicable for any attrition/comminution process), such as:strength distribution, selection, equivalence, breakage, and fatigue, have been integrated into the threedimensional CFD–DEM simulation tool. The main drawback of such a design tool is the long computational time required owing to the large number of particles and the minute time-step required to maintain a steady solution while simulating the flow of particulate materials with very fine particles.The present study developed several methods to accelerate CFD–DEM simulations: reducing the number of operations carried out at the single-particle level, constructing a DEM grid detached from the CFD grid enabling a no binary search, generating a sub-grid within the DEM grid to enable a no binary search for fine particles, and increasing the computational time-step and eliminating the finest particles in the simulation while still tracking their contribution to the process.The total speedup of the simulation process without the elimination of the finest particles was a factor of about 17. The elimination of the finest particles gave additional speedup of a factor of at least 18.Therefore, the simulation of a grinding process can run at least 300 times faster than the conventional method in which a standard no binary search is employed and the smallest particles are tracked.  相似文献   

2.
Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 June to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies. However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16.9 nm/h. The needed concentration of condensable vapor was 6.1 × 107 cm?3, and its source rate was 1.1 × 106 cm?3 s?1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号