首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
E-DNA sensors are a reagentless, electrochemical oligonucleotide sensing platform based on a redox-tag modified, electrode-bound probe DNA. Because E-DNA signaling is linked to hybridization-linked changes in the dynamics of this probe, sensor performance is likely dependent on the nature of the self-assembled monolayer coating the electrode. We have investigated this question by characterizing the gain, specificity, response time and shelf-life of E-DNA sensors fabricated using a range of co-adsorbates, including both charged and neutral alkane thiols. We find that, among the thiols tested, the positively charged cysteamine gives rise to the largest and most rapid response to target and leads to significantly improved storage stability. The best mismatch specificity, however, is achieved with mercaptoethanesulfonic and mercaptoundecanol, presumably due to the destabilizing effects of, respectively, the negative charge and steric bulk of these co-adsorbates. These results demonstrate that a careful choice of co-adsorbate chemistry can lead to significant improvements in the performance of this broad class of electrochemical DNA sensors.  相似文献   

2.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


3.
In this study, we have proposed a novel strategy for the rapid identification and high sensitive detection of different kinds of cancer cells by means of electrochemical and contact angle measurements. A simple, unlabeled method based on the functionalized Au nanoparticles (GNPs) modified interface has been utilized to distinguish the different cancer cells, including lung cancer cells, liver cancer cells, drug sensitive leukemia K562/B.W cells and drug resistant leukemia K562/ADM cells. The relevant results indicate that under optimal conditions, this method can provide the quantitative determination of cancer cells, with a detection limit of ∼103 cells mL−1. Our observations demonstrate that the difference in the hydrophilic properties for target cellular surfaces and in the uptake efficiency of the anticancer drug daunorubicin for different cancer cells could be readily chosen as the elements of cancer identification and sensitive detection. This raises the possibility to advance the promising clinic diagnosis and monitoring of tumors with the aim of successful chemotherapy of human cancers.  相似文献   

4.
In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F). The breakage of Si–O induced by F based on the specific nucleophilic substitution reaction between F and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π–π conjugating interaction. This electrode was successfully applied to monitor F with a detection limit of 8.3 × 10−8 M. Compared with the conventional F ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples.  相似文献   

5.
The thioglucose-capped gold nanoparticles have been prepared by the chemical reduction of HAuCl4 using thioglucose as the reducing and capping agent, which displays selective colorimetric detection of fluoride ion in 10 mM HEPES buffer at physiological pH.  相似文献   

6.
Gold electrode surface is modified via covalent attachment of a synthesized thiol functionalized with 8-hydroxyquinoline, p-((8-hydroxyquinoline)azo) benzenethiol (SHQ), for the first time. The behavior of the nanostructured electrode surface (Au–SHQ) is characterized by electrochemical techniques including cyclic and differential pulse voltammetry (CV and DPV), and electrochemical impedance spectroscopy (EIS). The modified surface is stable in a wide range of potentials and pHs. A surface pKa of 6.0 ± 0.1 is obtained for Au–SHQ electrode using surface acid/base titration curves constructed by CV and EIS measurements as a function of pH. These results helped to determine the charge state of the surface as a function of pH. The gold modified electrode surface showed good affinity for sensing the Al(III) ion at pH 5.5. The sensing process is based on (i) accumulation and complex formation between Al(III) from the solution phase and 8HQ function on the Au electrode surface (recognition step) and (ii) monitoring the impedance of the Au–SHQ–Al(III) complex against redox reaction rate of parabenzoquinone (PBQ) (signal transduction step). The PBQ is found to be a more suitable probe for this purpose, after testing several others. Thus, the sensor was tested for quantitative determination of Al(III) from the solution phase. At the optimized conditions, a linear response, from 1.0 × 10−11 to 1.2 × 10−5 M Al(III) in semi-logarithmic scale, with a detection limit of 8.32 × 10−12 M and mean relative standard deviation of 3.2% for n = 3 at 1.0 × 10−7 M Al(III) is obtained. Possible interferences from coexisting cations and anions are also studied. The results show that many ions do not interfere significantly with the sensor response for Al(III). Validity of the method and applicability of the sensor are successfully tested by determination of Al(III) in human blood serum samples.  相似文献   

7.
将3-氨丙基-三乙氧基硅烷(ATS)修饰在玻碳电极表面,再自组装一层纳米金,制备了一种新型NO2^-的电化学传感器。该修饰电极对NO2^-有较好的催化作用。在pH为3时,NO2^-的氧化峰电流与其浓度在5.0×10^-7~1.0×10^-3mol/L范围内呈良好的线性关系,检出限可达2.0×10^-7mol/L。方法具有较高的灵敏度和较好的重现性。  相似文献   

8.
Gold electrodes modified by underpotential deposition to expose a layer of silver atoms on their surfaces were used to measure thiocyanate concentrations in aqueous solutions. When exposed to thiocyanate, the ion adsorbs onto the modified electrode and causes changes in the electrochemical properties of the silver adlayer. Coulometric measurement of the fraction of the silver adlayer that remains in its original state provides a means for determining thiocyanate concentrations. The adsorption of thiocyanate onto the electrode follows a first‐order process with a rate constant of ca. 440 L/mol s that defines its concentration/time response.  相似文献   

9.
In this work, we investigated the fabrication of surface plasmon resonance (SPR) nanosensor using gold nanoparticles (AuNPs) chemisorbed onto self assembled monolayer of 10-(3-amino phenoxy) decane-1-thiol on gold substrate. The fabrication process of SPR nanosensor was characterized using different techniques such as infrared reflection-absorption spectra (IRRAS), xX-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). The fabricated SPR nanosensor was used for detection of Cu2+ in an aqueous solution using surface plasmon resonance refractometer. The results confirm the fabrication of new SPR nanosensor. The fabricated SPR nanosensor showed a good activity toward the detection of Cu2+. The detection of Cu2+ in an aqueous solution using the fabricated SPR nansensor was enhanced in the presence of gold nanoparticles.  相似文献   

10.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

11.
We investigated the effect of incorporating extra amino acids (AA) at the n-terminus of the thiolated and methylene blue-modified peptide probe on both specificity and selectivity of an electrochemical peptide-based (E-PB) HIV sensor. The addition of a flexible (SG)3 hexapeptide is, in particular, useful in improving sensor selectivity, whereas the addition of a highly hydrophilic (EK)3 hexapeptide has shown to be effective in enhancing sensor specificity. Overall, both E-PB sensors fabricated using peptide probes with the added AA (SG-EAA and EK-EAA) showed better specificity and selectivity, especially when compared to the sensor fabricated using a peptide probe without the extra AA (EAA). For example, the selectivity factor recorded in the 50% saliva was ∼2.5 for the EAA sensor, whereas the selectivity factor was 7.8 for both the SG-EAA and EK-EAA sensors. Other sensor properties such as the limit of detection and dynamic range were minimally affected by the addition of the six AA sequence. The limit of detection was 0.5 nM for the EAA sensor and 1 nM for both SG-EAA and EK-EAA sensors. The saturation target concentration was ∼200 nM for all three sensors. Unlike previously reported E-PB HIV sensors, the peptide probe functions as both the recognition element and antifouling passivating agent; this modification eliminates the need to include an additional antifouling diluent, which simplifies the sensor design and fabrication protocol.  相似文献   

12.
A choline oxidase (ChO) immobilized enzyme reactor (IMER) prepared by glutaraldehyde coupling of the enzyme on aminopropyl modified controlled pore glass beads is described. The ChO-IMER was coupled, in a flow injection configuration system, to an interference free hydrogen peroxide amperometric sensor based on a Pt surface modified by an overoxidized polypyrrole film. The resulting analytical device responds selectively to choline and displays a sensitivity of 46.9 ± 0.2 μC mM−1 and a limit of detection, calculated at a signal-to-noise ratio equal to 3, of 7 μM. Sensitivity remains constant for about 20 days and then starts to slowly deteriorate and after 2 months a 70% of the initial sensitivity was still retained. The application to choline determination in milk hydrolysates is demonstrated. Short- and long-term drift observed in the analytical response can be corrected by a bracketing technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号