首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Transverse flow transversely excited (TFTE) CO2 lasers are easily scalable to multikilowatt level. The laser power can be scaled up by increasing the volumetric gas flow and discharge volume. It was observed in a TFTE CW CO2 laser having single row of pins as an anode and tubular cathode that the laser power was not increasing when the discharge volume and the gas volumetric flow were increased by increasing the electrode separation keeping the gas flow velocity constant. The discharge voltage too remained almost constant with the change of electrode separation at the same gas flow velocity. This necessitated revision of the scaling laws for designing this type of high power CO2 laser. Experimental results of laser performance for different electrode separations are discussed and the modifications in the scaling laws are presented.  相似文献   

2.
This paper presents the results of the calculation of the parameters of the active medium of a fast-axial-flow CO2 laser using numerical methods in the framework of a one-dimensional approximation of the set of continuity equations, Bernoulli equation, equation of gas state, energy equation and multi-temperature rate equations with regard to diffusion for the gas flow in the cylindrical discharge tube. The spatial distribution of the small-signal gain and gas temperature along the gas flow direction have been calculated for a given set of initial conditions, namely, gas flow velocity, gas pressure and the tube diameter. In addition, the dependence of small-signal gain, the asymmetric stretch vibrational temperature of CO2 (T3) and the gas temperature on the discharge current were studied.  相似文献   

3.
Experimental and theoretical study of VI characteristics of UV pre-ionized TEA CO2 laser has been carried out for a variety of gas mixtures emitting different optical pulse shapes suitable for various applications. Coupled differential equations have been solved to model the pulse excitation circuit using the numerically calculated values of ionization coefficient (α), attachment coefficient (β) and drift velocity (Ud) as functions of E/N (i.e. electric field to neutral particle density ratio) for chosen gas mixture. Calculated and experimental V–I characteristics for gas mixtures (CO2:N2:He::1:2:3, 1:1:4, 1:1:5 and 1:0:4.7) show a good agreement. It has been shown that gas mixture has a dominant effect on the delay between pre-ionization and main discharge; thus, determining the long-term stability of discharge. The excitation pulse duration increases with increase in molecular content of gas mixture (i.e. amount of CO2 and N2 in gas mixture).  相似文献   

4.
In a research of fast axial flow CO2 laser sustained by 150 kHz silent discharge, we found the optimized gas mixing ratio was CO2:N2:He=1:22:5 or the content of helium was only about 18%. This result upset the situation of common CO2 lasers in which the most important laser gas is helium. An explanation of our particular results and supporting experimental evidence are given.  相似文献   

5.
High power industrial multibeam CO2 lasers consist of a large number of closely packed parallel glass discharge tubes sharing a common plane parallel resonator. Every discharge tube forms an independent resonator. When discharge tubes of smaller diameter are used and the Fresnel numberN ≪ 1 for all resonators, they operate in waveguide mode. Waveguide modes have excellent discrimination of higher order modes. A DC excited waveguide multibeam CO2 laser is reported having six glass discharge tubes. Simultaneous excitation of DC discharge in all sections is achieved by producing pre-ionization using an auxiliary high frequency pulsed discharge along with its other advantages. Maximum 170 W output power is obtained with all beams operating in EH11 waveguide mode. The specific power of 28 W/m is much higher as compared to similar AC excited waveguide multibeam CO2 lasers. Theoretical analysis shows that all resonators of this laser will support only EH11 mode. This laser is successfully used for woodcutting  相似文献   

6.
A transverse flow transversely excited (TFTE) CW CO2 with a maximum output power about 15 kW has been developed. This is excited by pulser sustained DC discharge applied between a pair of multi-pins anodes and a common tubular cathode. Though the laser power in convective cooled CO2 laser scales proportionally with the volumetric gas flow, it did not increase in this laser when the volumetric gas flow was increased by increasing the electrode separation keeping the flow velocity constant. The discharge voltage too remained almost unchanged with increase of the electrode separation. These observations are explained considering the electrical discharge being controlled by ionization instability. Laser materials processing applications often demand programming facilities for laser power modulation. A four-stage cascaded multilevel DC–DC converter-based high-frequency switch mode power supply has been developed to modulate the output power of the laser. Laser was operated up to 15 kW output power in four different modes viz. continuous wave mode, pulse periodic mode, single shot mode and processing velocity-dependent power mode with 1.2 kHz modulation bandwidth. We describe briefly the laser system, the SMPS, and the temporal behavior of laser beam.  相似文献   

7.
In this paper we present a new discharge technique to excite slab CO2 lasers. A uniform stable glow discharge has been obtained in a volume of 3 × 30 × 446 mm3. Output power is 10 W, and a gain of 0.26% cm−1 has been obtained.  相似文献   

8.
A transverse flow, transverse discharge cw CO2 laser in which de discharge is sustained by employing high repetition rate high voltage pulses has been developed. Pulser sustained discharge through electrodes of innovative design provided uniform excitation at electrical input power densities more than 10 W/cc. Laser output power more than 2.5 kW was obtained in a laser gas mixture consisting of 0.5 mbar of CO2, 16 mbar of N2 and 38.5 mbar of He. Design details and operational characteristics of this laser are presented.  相似文献   

9.
CO2 lasers with transverse discharge and convective gas cooling find ever-increasing application. On strategy in making such lasers more efficient radiators is increasing the rate of the gas flow through the discharge zone with the help of diametral disk fans-heat exchangers. The application of such fans-heat exchangers, however, entails serious difficulties related to the glow discharge-gas flow interaction. In the present study, we investigate the stability problem for volume discharge in the gas loop of a CO2 laser with diametral dis fans-heat exchangers.  相似文献   

10.
Multibeam CO2 lasers consist of a large number of closely packed parallel glass discharge tubes, all sharing a common plane parallel resonator. This paper describes construction and operation of a CW multibeam CO2 laser consisting 20 discharge tubes and cooled length of 1500 mm, delivering 1 kW power. A high-frequency pulser is used for producing preionization in all discharge sections for initiating the main DC discharge simultaneously in all discharge tubes. Plane parallel resonator consists of a plane ZnSe mirror of 90 mm diameter having 60% reflectivity and a gold-coated copper mirror of same diameter. This laser operates in waveguide regime and laser power is not critically sensitive to mirror misalignment.  相似文献   

11.
A supersonic gas flow having a Mach number of 2 has been realized in a closed-cycle radio-frequency (RF)-discharge-excited supersonic CO2 laser system. Stable RF discharge at a high CO2 gas concentration has become possible using supersonic gas flow and RF discharge generated between dielectric electrodes. As a result, high RF input power density has been obtained. In addition, a high small-signal gain has been obtained in the supersonic section through decreases in gas pressure and gas temperature due to supersonic gas flow.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

12.
The wavelength-temperature shift observed in pulsed TE CO2 lasers is discussed theoretically by means of Six-temperature model rate equations for tunable TE CO2 lasers. Numerical calculations of the temperature-wavelength shift in a pulsed TE CO2 laser with a simple plano-concave stable resonator, whether excited by conventional low-inductance fast-discharge scheme or by a long-pulse Pulser/sustainer discharge scheme, show that the laser output wavelengths are within the 10P branch as the ambient temperature varies from 228 to 338 K, but will change as the ambient temperature varies. The laser output wavelengths will move to the transition lines with longer wavelengths in the 10P branch as the ambient temperature increases and vice versa. The calculated results also illustrate that near the ambient temperature of 310 K, the laser is more likely to operate on multi-transition lines. Considering this wavelength-temperature shift, the chilling device adopted in high-power high repetition rate TE CO2 lasers is important in maintaining a stable laser output spectra as well as a stable laser output power. The numerical results also suggest that a frequency agile resonator is highly recommended if stable laser output spectra are required in TE CO2 lasers.  相似文献   

13.
高智 《物理学报》1984,33(9):1294-1300
介质流动对于气体激光功率输出的大幅度提高,起着决定性的作用。分析表明:表征连续波激光的饱和强度和光功率密度(或小信号增益系数)均随流速而非线性地增大,并趋向各自的极限值;饱和强度的增加量约不超过10倍;光功率密度的大幅度增加起因于激励能在气流中的累积。这些结论与常用理论关于饱和强度随流速线性且无限地增大,光功率密度增大起因于饱和强度增大的结论并不相同。本文关于饱和强度随气流渡越时间变化的定量结果与流动CO2气体激光饱和强度的测试结果相符。 关键词:  相似文献   

14.
Using mass-spectrometric investigations the gas composition of the active medium of sealed-off cw RF-excited CO2 waveguide lasers have been studied. It has been found that a low degree of CO2 dissociation and a laser power improvement can be achieved by means of a gold catalyst in the laser discharge volume. The conditions for long operational lifetimes of these lasers are described. Received: 21 December 1999 / Revised version: 1 May 2000 / Published online: 6 September 2000  相似文献   

15.
Summary The performance of a high-power CO2 laser for optical pumping is presented. Different operation conditions have been tested: internal and external optics, different reflectors and irides, different gas flow rates and gas circuits. High power, stability and tunability are the main system characteristics. The delivered power in the optimized conditions is 100 W on the 9P(36) line and 200 W on the strongest lines, with a power stability of 99% and a frequency stability within a couple of MHz in some hours. To speed up publication, the authors of this paper has agreed to not receive the proofs for correction.  相似文献   

16.
A four-temperature model has been applied on a fast axial flow, longitudinal discharge CO2 laser. Using Runge–Kutta method, a set of differential equations of the model is numericaly solved. These equations describe the operation of the laser with certain ratio 1:3:6 of the mixture CO2:N2: He and average output power of 550 W.The temporal behaviour of the output power and photon density was obtained. The effects of kinetic temperature, coupled mirror reflectivity, gas flow speed, and cavity loss on the output power were studied.Calculated output power was compared with its measured value taken from experiment and a good agreement was observed.  相似文献   

17.
The use of isotopic carbon dioxide lasers for determination of carbon (and oxygen) isotope ratios was first demonstrated in 1994. Since then a commercial device called LARA?, has been manufactured and used for Helicobacter pylori breath tests using 13C-labelled urea. The major advantages of the optogalvanic effect compared with other infrared absorption isotope ratio measurement techniques are its lack of optical background and its high sensitivity resulting from a signal gain proportional to laser power. Continuous normalisation using two cells, a standard and sample, lead to high accuracy as well as precision. Recent advances in continuous flow measurement of 13C/12C ratios of CO2 in air and extensions of the technique to 14C, which can be analysed as a stable isotope, are described.  相似文献   

18.
A new design of the U-type resonator is described. In this way, a laser beam with symmetrical intensity profile (regarding to a symmetry plane) can be extracted from an active medium that exhibits gain asymmetry along one of the transverse directions. The whole area of the active medium cross-section can be used, and consequently the laser efficiency will be increased. This resonator structure was applied for efficiency power extraction (as a low order TEM modes laser beam) from a DC excited transverse flow CO2 laser with cylindrical geometry. Although the cross-section area of the discharge was entirely used (including the cathode fall region), a symmetrical intensity profile of the laser beam (regarding to the two orthogonal symmetry planes) was obtained in the near field as well as in the far field; the gain asymmetry along the flow direction was compensated by the gas circulation fluidodynamical circuit with two counterflowing discharge channels. A double-U optical resonator was introduced in order to provide a laser beam with axial symmetry.For the practical construction of these two types of optical resonators we have developed two new types of 90° deflection elements: the first one, which does not reverse the image (and which has the properties of the pentaprism), and the second one, which rotates the image with 90° angle. Both elements exhibit good focusability if they are equipped with two concave mirrors.  相似文献   

19.
The Er:YAG and the CO2 laser are competitors in the field of hard tissue ablation. The use of Er:YAG lasers (2.94 μm, pulse length L of 100 to 200 μs) show smaller areas of thermal defects then ‘‘superpulsed’’ CO2 lasers with pulse lengths of approximately 100 μs. Only the development of a Q-switched CO2 laser (9.6 μm, τL=250 ns) allowed for similar results. In this paper new results for the Er:YAG and the Q-switched CO2 laser under the influence of water spray will be presented. Several parameters are of special interest for these investigations: the specific ablation energy, which shows a minimum for the CO2 laser at an energy density of 9 J/cm 2 and a broad shallow minimum in the range of 10 to 70 J/cm2 for the Er:YAG laser, and comparison of the cut-shape and depth. Surface effects and cutting velocity are discussed based on SEM pictures. Received: 19 July 2000 / Revised version: 1 November 2000 / Published online: 30 November 2000  相似文献   

20.
Details of an experimental investigation of the output characteristics of the 1.2 kW cw transverse-flow, electrically excited CO2 laser are presented. They were used for estimation of the saturation intensity and the laser cavity loss values, as they follow from the Rigrod-type model of laser operation. The saturation intensity parameter was calculated from measurements of the output power and small signal gain performed with the same experimental conditions. Measurements of the small signal gain were conducted at different points along the gas flow direction for several laser operational parameters described by gas pressure and input electrical power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号