首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
交联壳聚糖分离富集-火焰原子吸收法测定水样中痕量银   总被引:3,自引:0,他引:3  
以甲醛、环硫氯丙烷为交联剂,由壳聚糖合成了一种新型的交联壳聚糖微球(FCCIS)分离树脂,研究了不同条件下FCCTS对Ag(Ⅰ)的吸附性能.在pH 3.6时FCCTS对Ag(Ⅰ)定量吸附,吸附在树脂上的Ag(Ⅰ)可用0.5 moL/L的氨水将其洗脱,用火焰原子吸收光谱测定.该法对Ag(Ⅰ)的检出限为61 ng/mL(3σ,n=8),相对标准偏差为2.2%(n=7,ρ=2μg/mL),线性范围为0.05~4μg/mL,加标回收率在98.8%~101.7%之间.该法已用于水样中痕量银测定.  相似文献   

2.
本文采用化学修饰技术制备了新型固相萃取材料罗丹宁-壳聚糖,用傅立叶红外(IR)光谱对其进行了表征。以该材料作为固相萃取剂,采用火焰原子吸收(FAAS)法为检测手段,在动态条件下系统研究了该吸附材料对痕量Ag+的吸附性能。研究结果表明:在pH=5.0,室温下以1.8mL/min速度流过分离柱,试液中的Ag+能被该材料定量吸附,其动态饱和吸附容量为72.62mg/g。吸附的Ag+可用8mL 0.1mol/L硫脲-0.05 mol/L HNO3混合液以0.7 mL/min流速完全洗脱,洗脱液中的Ag+用FAAS法测定。该方法对Ag+的检出限(3σ,n=11)为8.50μg/L,线性范围为0.01~5.0mg/L,相对标准偏差(RSD)为0.72%;加标回收率在97.8%~102.7%之间。方法用于实际环境水样中痕量Ag+的测定,结果满意。  相似文献   

3.
制备了新型纳米B2O3/TiO2吸附材料,并采用扫描电镜(SEM)及红外光谱(IR)对其进行表征,优化了纳米B2O3/TiO2复合材料对试液中痕量银的吸附和解吸条件,建立了纳米B2O3/TiO2分离富集-原子吸收光谱测定痕量银的新方法。当pH 4.3时,在22℃下振荡20 min,Ag+能被该材料快速吸附,其静态饱和吸附容量为11.72 mg/g,吸附在纳米B2O3/TiO2上的Ag+可用0.1 mol/L HNO3-0.05 mol/L硫脲(1∶4)完全洗脱。该方法的检出限为2.01μg/L,线性范围为0.01~4.00 mg/L,相对标准偏差(RSD)为1.8%,加标回收率为95%~105%。方法应用于实际矿渣样品中痕量银的测定,结果满意。  相似文献   

4.
样品经活性炭吸附-Pb2+沉淀法除去硫醇和S2-后,利用基于双Ψ型微流控(层流流量不大于18.0μg·L-1)芯片的多流路平行层流处理样品,采用荧光分光光度法测定其中CN-的含量。结果表明:利用层流间高效传质特性,实现了水中痕量的弱酸可分解氰化物的高效传质转移;CN-的线性范围为1.00~10.00μg·L-1,检出限(3s/k)为0.12μg·L-1,以河水样品为基体进行加标回收试验,回收率为99.5%,102%,测定值的相对标准偏差(n=6)小于3.5%。  相似文献   

5.
制备了聚(丙烯酰胺-乙二醇二甲基丙烯酸酯)(Poly(AA-EGDMA))整体柱,采用红外(IR)光谱、扫描电子显微镜(SEM)对其结构和形貌进行了表征。基于此,建立了Poly(AA-EGDMA)整体柱毛细管微萃取(CME)-等离子体质谱(ICP-MS)联用检测生物样品中痕量重金属离子的分析方法。对影响CME的诸多条件,如样品溶液的pH值、上样体积、上样流速、解吸剂浓度及体积、解吸剂流速以及共存离子的干扰等进行了详细的考察。在优化的实验条件下,方法对Cd2+和Pb2+的检出限分别为4ng·L-1和36ng·L-1,相对标准偏差(c=0.2μg·L-1,n=7)分别为4.7%和3.9%。该整体柱对Cd2+和Pb2+的吸附容量分别为46.7μg·m-1和130μg·m-1。将所建立的方法用于尿样中痕量重金属离子Cd2+、Pb2+的测定,加标回收率分别为99%和100%。  相似文献   

6.
报道了新型固化单宁树脂的合成方法及其对钯(Ⅱ)分离富集的研究.探讨了溶液pH值、温度、洗脱条件及干扰离子等对钯(Ⅱ)分离富集的影响.在pH=3,温度为25℃的条件下恒温水浴振荡20 min,痕量钯(Ⅱ)可被固化单宁树脂定量富集,其静态饱和吸附容量为44.91 mg·g-1.吸附的钯(Ⅱ)可用0.2 mol·L-1硫脲与0.2 mol·L-1盐酸混合液(体积比为1∶1)完全洗脱, 用火焰原子吸收光谱法(FAAS)测定.该法对钯(Ⅱ)的检出限(3σ,n=11)为0.091 μg·mL-1,相对标准偏差为2.69%(n=7),线性范围为0.16~8.2 μg·mL-1,加标回收率在97%~100%之间.方法用于催化剂中钯(Ⅱ)的测定,结果满意.  相似文献   

7.
建立了用活性炭对水中痕量银进行预富集的新方法。结果表明,pH=1.0时,活性炭能对水中被抗坏血酸还原后的痕量银进行吸附富集,而Cu(Ⅱ)、Fe(Ⅲ)、Co(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)、Zn(Ⅱ)、Mn(Ⅱ)、Al(Ⅲ)、Bi(Ⅲ)和Sb(Ⅲ)等常见阳离子不被吸附,用K2S2O8将吸附在活性炭上的单质银氧化解脱后,用Mg(NO3)2辅助置换洗脱,可用分光光度法测定。该法在8~50μg/L银(Ⅰ)范围内加标回收率为93.2~97.1%。同时还研究了活性炭对银的吸附行为,提出了活性炭表面上被氧化的Ag(Ⅰ)和Mg(Ⅱ)有离子交换作用。应用该法测定自来水中痕量银,结果令人满意。  相似文献   

8.
基于钼(Ⅵ)在-0.60V(vs.Ag/AgCl)电位下在线还原为钼(Ⅲ),且在碱性条件下钼(Ⅲ)与鲁米诺发生化学发光反应,据此提出了流动注射-电化学发光法测定煤灰中痕量钼(Ⅵ)的方法。钼(Ⅵ)的质量浓度与化学发光强度的增加值在5.0×10-7~5.0×10-4g.L-1范围内呈线性关系,检出限(3s/k)为5×10-8g.L-1。对1.0×10-6g.L-1钼(Ⅵ)标准溶液进行11次测定,测定值的相对标准偏差为2.6%。方法可用于煤灰中痕量钼(Ⅵ)的测定,测定值与国标方法测定值相符。  相似文献   

9.
报道用冠醚壳聚糖多孔微球选择性富集雨水中痕量铅并用石墨炉原子吸收法测定.DB-18-crown-6-CTS多孔微球在pH 5.5时,对Pb2+的富集率达到98%.吸附的Pb2+能用5 mL 2 mol·L-1的HCl定量洗脱,洗脱率98.1%.Pb2+被洗脱后,用石墨炉原子吸收法测定.该方法的富集倍数为100倍,检出限(3σ)为0.085 μg·L-1,相对标准偏差小于2.75%,用于分析实际雨水样,回收率为94.5%~102%.  相似文献   

10.
提出了硅藻土吸附在线柱富集-火焰原子吸收光谱法测定环境水样中痕量铜的方法。利用硅藻土对环境水样中痕量铜在线预富集,浓集因子达到27.6,使火焰原子吸收光谱法的检测能力达到测定环境水样中痕量铜的要求。方法检出限为0.32μg.L-1,RSD(20μg.L-1)为3.52%,加标回收率为97.0%~105.0%。  相似文献   

11.
环境水体中硝基氯苯类化合物是我国规定的环境优先控制的污染物之一[1],测定的主要方法为气相色谱法(GC)[2,3],将水中硝基氯苯类化合物经溶剂萃取或用 GDX-502 多孔微球吸附,浓缩,电子捕获检测器测定,该方法的检出限较高(0.04 mg·L-1),不太适用于水中痕量硝基氯苯的测定.  相似文献   

12.
研究制备了对铀有良好吸附性能的涂二苯甲酰甲烷(DBM)-磷酸三丁酯(TBP)增塑聚氨酯泡沫塑料。该增塑泡塑在pH6.5时可快速定量吸附水溶液中痕量铀,饱和吸附量为120μg/g增塑泡塑。用0.6mol·L-1盐酸20mL可定量洗脱色谱柱中10μg的铀,常见阳离子不干扰铀的吸附及洗脱。建立的泡塑富集光度法可准确测定环境水中痕量铀,具有高效灵敏的特点。  相似文献   

13.
提出了氢化物发生-原子荧光光谱法测定核电用钢中痕量锡的方法。样品在酒石酸溶液存在下,用盐酸-硝酸(3+1)混合酸溶解,用50 g·L-1硫脲-抗坏血酸混合溶液作掩蔽剂,20 g·L-1硼氢化钾溶液作为锡(Ⅳ)的还原剂,氢化反应在pH 5.0~5.5介质中进行,锡的质量浓度在50μg·L-1范围以内与相应的荧光强度呈线性关系,方法的检出限(3s/k)为0.4μg·L-1。应用此方法分析了核电用钢及不锈钢标准样品中锡的含量,并与电感耦合等离子体原子发射光谱法作了比较,测定值与标准值相符,结果的相对标准偏差(n=8)均小于4.5%。  相似文献   

14.
制备了碳量子点修饰的硅胶SiO2@CDs.在盐酸介质中KBrO3能够氧化碳量子点使其荧光发射峰减弱,而双酚A(BPA)对此氧化猝灭有明显抑制作用,据此建立了荧光法测定痕量双酚A的新方法,线性范围是20~500μg·L-1,检出限3σ为5.2μg·L-1.本文作者将该方法成功用于塑料制品中双酚A的测定,回收率在95%~104%之间.  相似文献   

15.
基于分散剂乙醇(0.5mL)和萃取剂四氯化碳(30μL)的协同作用,可使水样(5.0mL)中痕量铅(Ⅱ)与吡咯烷基二硫代氨基甲酸铵(APDC,0.012g·L-1)所形成的螯合物,在pH 7.0及55℃的条件下迅速借分散液相微萃取(DLLME)进入四氯化碳的液滴中,从而达到样品中痕量铅的分离与富集。其含量用连续光源石墨炉原子吸收光谱法予以测定。铅的线性范围在1.00~40.00μg·L-1之间,其检出限(3s/k)为0.15μg·L-1。应用本法测定了自来水和河水中痕量铅,加标回收率在96.8%~105%之间,测定值的相对标准偏差(n=10)均小于5%。  相似文献   

16.
以戊二醛、环氧氯丙烷为交联剂,用三乙烯四胺改性,由壳聚糖合成了一种新型的三乙烯四胺修饰交联壳聚糖微球(CRN)分离树脂,研究了不同条件下CRN对Cd2+的吸附性能。在pH6.0时,CRN能定量吸附溶液中的痕量Cd2+,其静态饱和吸附容量为31.0 mg/g。吸附在CRN上的Cd2+可用0.5 mol/L的H2SO4洗脱,用火焰原子吸收法测定洗脱液中Cd2+的含量。本法对Cd2+的检出限(3σ)为24.6 ng/mL,相对标准偏差(RSD)为2.1%(n=11,c=1.0μg/mL),加标回收率在97.3%~104.0%。该方法可用于矿渣中痕量镉的测定。  相似文献   

17.
基于分散剂乙醇(0.5mL)和萃取剂四氯化碳(30μL)的协同作用,可使水样(5.0mL)中痕量铅(Ⅱ)与吡咯烷基二硫代氨基甲酸铵(APDC,0.012g·L-1)所形成的螯合物,在pH 7.0及55℃的条件下迅速借分散液相微萃取(DLLME)进入四氯化碳的液滴中,从而达到样品中痕量铅的分离与富集。其含量用连续光源石墨炉原子吸收光谱法予以测定。铅的线性范围在1.00~40.00μg·L-1之间,其检出限(3s/k)为0.15μg·L-1。应用本法测定了自来水和河水中痕量铅,加标回收率在96.8%~105%之间,测定值的相对标准偏差(n=10)均小于5%。  相似文献   

18.
在流动注射-火焰原子吸收光谱法(FI-FAAS)测定铅(Ⅱ)的流路中设计了铅(Ⅱ)的磷酸盐沉淀在线富集的编结反应器,痕量铅(Ⅱ)与2.0×10-9mol·L-1磷酸二氢钾溶液在微酸性条件下在反应器中反应.当试样溶液的进样体积固定为8.00 mL,采用的富集流速为4.4 mL·min-1,富集时间为90 S,生成的铅(Ⅱ)的磷酸盐沉淀吸附于聚四氟乙烯反应管的内壁,毋需过滤,直接用2.0 mol·L-1硝酸流入管内使铅(Ⅱ)的沉淀溶解,溶液中铅(Ⅱ)按选定条件进行FAAS检测.按上述条件,可使增强系数(N)达到20,铅(Ⅱ)的检出限(3σ)达到23μg·L-1.对铅(Ⅱ)0.50 mg·L-1的标准溶液平行测定6次,算得测定结果的相对标准偏差为3.1%.用此方法分析了2件粉饼样品,测定值的相对标准偏差(n=6)分别为2.2%和4.1%.以此样品作基体进行回收试验,测得平均回收率为91%.  相似文献   

19.
对由溴化十六烷基吡啶(CPB)、辛基苯基聚氧乙烯醚(OP)、正丁醇、正庚烷和水组成的微乳溶液存在下,4-(6-甲氧基-8-喹啉偶氮)-间苯三酚与镓(Ⅲ)的显色反应,进行了研究并提出了分光光度法测定痕量镓(Ⅲ)的方法.结果表明:在pH 9.80的硼砂-氢氧化钠缓冲溶液中,镓(Ⅲ)与试剂形成1:2的红色络合物,络合物的最大吸收峰在525 nm波长处,表观摩尔吸光率为1.6×105mol-1·cm-1.镓(Ⅲ)量在μg·L-1范围内符合比耳定律,检出限(3S/N)为1 μg·L-1.方法用于煤和矿石中微量镓的测定,测得结果与原子吸收光谱法的结果相符,测定值的相对标准偏差(n=6)均小于5%.在两实样的基础上用标准加入法做回收试验,测得其平均回收率为102.7%.  相似文献   

20.
纳米TiO2对Ag(Ⅰ)配合物的吸附   总被引:1,自引:0,他引:1  
利用纳米TiO2的表面吸附活性,以[S2O3] 2-为络合剂,应用火焰原子吸收光谱检测方法,高效吸附分离了水中痕量Ag(Ⅰ).系统研究了纳米TiO2的晶体结构、溶液的pH值、吸附时间、 Ag(Ⅰ)的起始浓度及常见共存离子对吸附率的影响,确定了最佳吸附条件.FTIR光谱分析结果表明,Ag(Ⅰ)配合物以物理作用吸附在纳米TiO2颗粒表面.纳米TiO2对Ag(Ⅰ)的吸附等温线为S型,表现出多分子层吸附特征.硝酸和硫脲混合溶液可将吸附在TiO2纳米颗粒表面的Ag(Ⅰ)全部洗脱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号