首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epitaxial TiCxOy thin films were grown on MgO (0 0 1) substrates by using pulsed laser deposition method. High-resolution X-ray diffraction and transmission electron microscopy were used to examine crystallinity and microstructure of epitaxial TiCxOy film on MgO. The chemical composition of the film is determined to be x ∼ 0.47 and y ∼ 0.69 by X-ray photoelectron spectroscopy. Atomic force microscopy revealed that the surface of TiCxOy film is very smooth with roughness of 0.18 nm. The resistivity of the TiCxOy film measured by four-point-probe method was about 137 μ Ω cm.  相似文献   

2.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

3.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

4.
The structure of thin Al films grown on Si(1 1 1) with thin Cu buffer layers has been investigated using synchrotron radiation photoemission spectroscopy. A thin Cu(1 1 1) layer between the Si(1 1 1) substrate and an Al film may enhance quantum well effects in the Al film significantly. The strength of quantum well effects has been investigated qualitatively with respect to the thickness of the Cu buffer layer and to the Al film thickness. Deposition of Cu on Si(1 1 1)7 × 7 leads to formation of a disordered silicide layer in an initial regime before a well-ordered Cu(1 1 1) film is formed after deposition of the equivalent of 6 layers of Cu. In the regime below 6 layers of Cu the disorder is transferred to Al layers subsequently grown on top. The initial growth of up to 8 layers of Al on a well-ordered Si/Cu(1 1 1) layer leads to a disordered film due to the lattice mismatch between the two metals. When the Cu buffer layer and the Al over-layer are above 6 and 8 layers, respectively the Al film shows sharp low energy electron diffraction patterns and very sharp quantum well peaks in the valence band spectra signalling good epitaxial growth.  相似文献   

5.
The formation of ordered Sr overlayers on Si(1 0 0) by Atomic Layer Deposition (ALD) from bis(triisopropylcyclopentadienyl) Strontium (Sr(C5iPr3H2)2) and H2O has been investigated. SrO overlayers were deposited on a 1-2 nm SiO2/Si(1 0 0) substrate, followed by a deoxidation process to remove the SiO2 layer at high temperatures. Auger electron spectroscopy, Rutherford backscattering spectrometry, spectroscopic ellipsometry, and low-energy electron diffraction were used to investigate the progress of both ALD and deoxidation processes. Results show that an ordered Sr/Si(1 0 0) surface with 2 × 1 pattern can be obtained after depositing several monolayers of SrO on Si using ALD followed by an anneal at 800-850 °C. The (2 × 1) ordered Sr/Si(1 0 0) surface is known to be an excellent template for the epitaxial growth of SrTiO3 (STO) oxide. The present results demonstrate that ALD is a potential alternative to molecular beam epitaxy methods for the fabrication of epitaxial oxides on semiconductor substrates.  相似文献   

6.
High temperature GaN layers have been grown on Si (1 1 1) substrate by metalorganic vapor phase epitaxy (MOVPE). AlN was used as a buffer layer and studied as a function of thickness and growth temperature. The growth was monitored by in situ laser reflectometry. High resolution X-ray diffraction (HRXRD) revealed that optimized monocrystalline GaN was obtained for a 40 nm AlN grown at 1080 °C. This is in good agreement with the results of morphological study by scanning electron microscopy (SEM) and also confirmed by atomic force microscopy (AFM) observations. The best morphology of AlN with columnar structure and lower rms surface roughness is greatly advantageous to the coalescence of the GaN epilayer. Symmetric and asymmetric GaN reflections were combined for twist and stress measurements in monocrystalline GaN. It was found that mosaicity and biaxial tensile stress are still high in 1.7 μm GaN. Curvature radius measurement was also done and correlated to the cracks observations over the GaN surface.  相似文献   

7.
Ab initio total energy methods are used to investigate the effects on a Ge(1 1 1)-5 × 5 surface of the lateral compressive stress that would be due to a Si substrate, and the effects of intermixing at the interface with the substrate. The effects of stress due to the lattice mismatch between Si and Ge are studied on a Ge slab by changing the lattice constant in the surface plane from that of experimental bulk diamond Ge to that of Si. When this is done the height difference of the Ge adatoms in the faulted half-cell from those in the unfaulted half is accentuated. Effects on the Ge surface due to the presence of the Si-Ge interface were studied using a thin Ge layer on a Si substrate. The presence of the substrate leads to corrugations with significant height differences appearing among the faulted adatoms. The energetics of intermixing were investigated for Si-Ge single atom interchanges. Additional corrugations resulted from the shortened bondlengths due to the Si impurity in the wetting layer.  相似文献   

8.
Scanning electron microscopy (SEM) images, transmission electron microscopy (TEM) images, and selected-area electron diffraction (SAED) patterns showed that vertically well aligned GaN nanorods with c-axis-oriented crystalline wurzite structures were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy. The high-resolution TEM (HRTEM) images showed that the crystallized GaN nanorods contained very few defects and that they were consisted of , {0 0 0 1}, and { } facets. The formation mechanisms for the GaN nanorods grown on Si(1 1 1) substrates are described on the basis of the SEM, TEM, SAED pattern, and HRTEM results.  相似文献   

9.
Crystalline magnesium oxide (MgO) (1 1 1), 20 Å thick, was grown by molecular beam epitaxy (MBE) on hydrogen cleaned hexagonal silicon carbide (6H-SiC). The films were further heated to 740 °C and 650 °C under different oxygen environments in order to simulate processing conditions for subsequent functional oxide growth. The purpose of this study was to determine the effectiveness and stability of crystalline MgO films and the MgO/6H-SiC interface for subsequent heteroepitaxial deposition of multi-component, functional oxides by MBE or pulsed laser deposition processes. The stability of the MgO films and the MgO/6H-SiC interface was found to be dependent on substrate temperature and the presence of atomic oxygen. The MgO films and the MgO/6H-SiC interface are stable at temperatures up to 740 °C at 1.0 × 10−9 Torr for extended periods of time. While at temperatures below 400 °C exposure to the presence of active oxygen for extended periods of time has negligible impact, exposure to the presence of active oxygen for more than 5 min at 650 °C will degrade the MgO/6H-SiC interface. Concurrent etching and interface breakdown mechanisms are hypothesized to explain the observed effects. Further, barium titanate was deposited by MBE on bare 6H-SiC(0 0 0 1) and MgO(1 1 1)/6H-SiC(0 0 0 1) in order to evaluate the effectiveness of the MgO as a heteroepitaxial template layer for perovskite ferroelectrics.  相似文献   

10.
The strain state of Fe films grown on Si(1 1 1) has been investigated by X-ray diffraction (XRD) in the thickness range between 11 and 304 monolayers. Fe grows tetragonally distorted with the orientation relationship Fe(1 1 1) // Si(1 1 1) . At low coverage, the films grow pseudomorphic. Above 15 monolayers the films are characterized by the coexistence of a pseudomorphic phase with another one which relaxes with the Fe thickness. This relaxation proceeds rapidly in the earlier stages then slowly with the film thickness. The XRD characterization allows one to obtain quantitative information on the in-plane and out-of-plane strains.  相似文献   

11.
In the search for silicon technology compatible substrate for III-nitride epitaxy, we present a proof-of-concept for forming epitaxial SiC layer on Si(1 1 1). A C/Si interface formed by ion sputtering is exposed to 100-1500 eV Ar+ ions, inducing a chemical reaction to form SiC, as observed by core-level X-ray photoelectron spectroscopy (XPS). Angle dependent XPS studies shows forward scattering feature that manifest the epitaxial SiC layer formation, while the valence band depicts the metal to insulator phase change.  相似文献   

12.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

13.
The authors report the growth of crack-free GaN on Si(1 1 1) substrate with step-graded AlGaN intermediate layers all grown at 1120 °C. By preparing all these layers at high-temperature, we can simplify the growth proceduce and minimize the growth time. Using X-ray diffraction and transmission electron microscopy, it was found that the high-temperature step-graded AlGaN intermediate layers can effectively reduce the tensile stress on GaN epitaxial layers. Photoluminescence and Raman measurements also indicate that we can improve the crystal quality of GaN by inserting the step-graded AlGaN intermediate layers.  相似文献   

14.
The SiC films were grown by solid source molecular beam epitaxy (SSMBE) on Si (1 1 1) with different amounts of Ge predeposited on Si prior to the epitaxial growth of SiC. The samples were investigated with reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), and X-ray diffraction (XRD). The results indicate that there is an optimized Ge predeposition amount of 0.2 nm. The optimized Ge predeposition suppress the Si outdiffusion and reduce the formation of voids. For the sample without Ge predeposition, the Si outdiffusion can be observed in RHEED and the results of XRD show the worse quality of SiC film. For the sample with excess amount of Ge predeposition, the excess Ge can increase the roughness of the surface which induces the poor quality of the SiC film.  相似文献   

15.
The thickness-dependent electronic structures of Dy silicide films grown on a Si(1 1 1) surface have been investigated by angle-resolved photoelectron spectroscopy. Two (1×1) periodic bands, both of them cross the Fermi level, have been observed in the silicide films formed by Dy coverages of 1.0 monolayer and below, and more than five () periodic bands have been observed in thicker films. Taking the () periodic structure of Dy atoms in the submonolayer silicide film into account, the periodicity of the two metallic bands indicate that they mainly originate from the orbitals of Si atoms, which form a (1×1) structure. Of the () periodic bands observed in thick films, four of them are well explained by the folding of the (1×1) bands into a () periodicity. Regarding the other band, the three () periodic bands would originate from the electronic states related to the inner Si layers that form a () structure, and the one observed in the 3.0 ML film only might originate from the electron located at the interface between bulk Si and the Dy silicide film.  相似文献   

16.
PLIE was used for rapid crystallisation of a-SiGeC films deposited by LCVD on Si(1 0 0) substrates. HRTEM study of thin films grown with several laser energies shows that the combination of the two laser techniques gives an almost completely crystallised alloy, even for the lowest laser fluence. Island formation is observed below a certain threshold of fluence (about 450 mJ/cm2). In the case of the lowest energy (100 mJ/cm2) the material was partially crystallised (with the crystalline material being the predominant state), to a nanocrystalline alloy with a considerable amount of epitaxialy grown grains and with grain sizes of several tens of nanometers. Above the threshold of 450 mJ/cm2 a rather smooth thin film is grown. The crystallisation is almost complete and the alloy is grown in an almost perfect epitaxial way.  相似文献   

17.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

18.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

19.
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 °C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19° with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 °C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed.  相似文献   

20.
Atomic force microscopes have become useful tools not only for observing surface morphology and nanostructure topography but also for fabrication of various nanostructures itself. In this paper, the application of AFM for fabrication of nanostructures by local anodic oxidation (LAO) of Si(1 0 0) and GaAs(1 0 0) surfaces is presented. A special attention is paid to finding relations between the size of oxide nanolines (height and half-width) and operational parameters as tip-sample voltage and tip writing speed. It was demonstrated that the formation of silicon oxide lines obeys the Cabrera-Mott theory, i.e. the height of the lines grow, linearly with tip-sample voltage and is inversely proportional to logarithm of tip writing speed. As for GaAs substrates, the oxide line height grows linearly with tip-sample voltage as well but LAO exhibits a certain deviation from this theory. It is shown that the selective chemical etching of Si or GaAs ultrathin films processed by LAO makes it possible to use these films as nanolithographic masks for further nanotechnologies, e.g. fabrication of metallic nanostructures by ion-beam bombardment. The ability to control LAO and tip motion can be utilized in fabrication of complex nanostructures finding their applications in nanoelectronic devices, nanophotonics and other high-tech areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号