首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effect of surface chemisorption on the spin reorientation transitions in magnetic ultrathin Fe films on Ag(0 0 1) by means of the polar and longitudinal magneto-optical Kerr effect (MOKE) and X-ray magnetic circular dichroism (XMCD) measurements. It is found by the MOKE that adsorption of O2 and NO induces the shift of the critical thickness for the transitions to a thinner side, together with the suppression of the remanent magnetization and the coercive field of the Fe film. This implies destabilization of the perpendicular magnetic anisotropy. On the other hand, H2 adsorption is found not to change the magnetic anisotropy, though the enhancement of the coercive field is observed. The XMCD reveals that although both the spin and orbital magnetic moments along the surface normal are noticeably reduced upon O2 and NO adsorption, the reduction of the orbital magnetic moments are more significant. This indicates that the destabilization of the perpendicular magnetic anisotropy upon chemisorption of O2 and NO originates from the change of the spin-orbit interaction at the surface.  相似文献   

2.
Orbital and spin magnetic moments of the Heusler compounds Co2FeAl and Co2Cr0.6Fe0.4Al were measured by magnetic circular dichroism in X-ray absorption (XMCD). The orbital magnetic moments per spin are quite large (0.1–0.2) compared to bulk values of Fe and Co metals, indicating a considerable spin–orbit coupling in these Heusler compounds. A strong localization of the 3d electron states might be responsible for this observation. The Co and Fe orbital to spin moment ratio shows a distinct decrease of r(Fe)=0.04±0.02 and r(Co)=0.06±0.02 with increasing external field for the ternary compound Co2FeAl, while the ratio is within error limits independent of the field for Co2Cr0.6Fe0.4Al. This is discussed in terms of a relation to magnetocrystalline anisotropies. PACS 75.50.Cc; 71.20.Lp; 78.40.Kc  相似文献   

3.
X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M1-edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {Y, Bi}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: ), crystal distortions preserving at best trigonal symmetry ( or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.  相似文献   

4.
A portable UHV-compatible gas aggregation cluster source, capable of depositing clean mass-selected nanoclusters in situ, has been used at synchrotron radiation facilities to study the magnetic behaviour of exposed and Co-coated Fe clusters in the size range 250 to 540 atoms. X-ray magnetic circular dichroism (XMCD) studies of isolated and exposed 250-atom clusters show a 10% enhancement in the spin magnetic moment and a 75% enhancement in the orbital magnetic moment relative to bulk Fe. The spin moment monotonically approaches the bulk value with increasing cluster size but the orbital moment does not measurably decay till the cluster size is above ∼ 400 atoms. The total magnetic moments for the supported particles though higher than the bulk value are less than those measured in free clusters. Coating the deposited particles with Co in situ increases the spin moment by a further 10% producing a total moment per atom close to the free cluster value. At low coverages the deposited clusters are super-paramagnetic at temperatures above 10 K but a magnetic remanence at higher temperature emerges as the cluster density increases and for cluster films with a thickness greater than 50 ?(i.e. 2-3 layers of clusters) the remanence becomes greater than that of an Fe film of the same thickness produced by a conventional deposition source. Thick cluster-assembled film show a strong in-plane anisotropy. Received 14 December 2000  相似文献   

5.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

6.
FePt (20 nm) films were annealed in a magnetic field (along the normal direction of the films) at a temperature around the Curie temperature of L10 FePt. The influence of magnetic filed annealing on texture and magnetic properties of FePt films were investigated. The results indicate that preferential (0 0 1) orientation and perpendicular anisotropy can be obtained in L10 FePt films by using magnetic field annealing around the Curie temperature of L10 FePt. This is one of the potential methods to obtain (0 0 1) orientation and thus to improve the perpendicular anisotropy in FePt films.  相似文献   

7.
The information of the Fe and Tb magnetic moments in [Fe(12 nm)/Tb(15 nm)]25 multilayer was got separately with X-ray magnetic circular dichroism (XMCD) measurements at various temperature. The Tb magnetic moments become to twist with increasing the applied magnetic field, as follows. (1) When the applied field H is less than the coercive force HC, Fe and Tb magnetic moments align anti-parallel, Fe moments being parallel to the magnetic field. This would be due to the ordinary exchange coupling between Fe and Tb magnetic moments. (2) H>HC, a twisted magnetic structure appears when the sample temperature is low, particularly lower than 150 K. This magnetic phase could come from the competition among the exchange coupling, the Zeeman energy and the anisotropic energy.  相似文献   

8.
A theoretical study of the magnetic properties of the CoPt and FePt ordered alloys has been performed. The calculation is done as a function of the spin-quantization axis by means of both the local spin density and the generalized-gradient approximations in conjunction with the full-potential linear muffin–tin orbital method. Both approximations produced similar results for the FePt and CoPt compounds. The band structure and the total density of states have been calculated and it was confirmed that all electronic states contribute to the magneto-crystalline anisotropy energy; the magnetization axis is along the [0 0 1] direction. The Fe and Co orbital magnetic moments decrease with respect to the angle γ between the [0 0 1] axis and the spin quantization axis, but for the [1 0 0] axis the orbital moment is comparable to the [0 0 1] moment. The Pt orbital moments are of the same order of magnitude as those of Fe and Co moments due to the large spin–orbit splitting parameter of Pt and show a similar behavior with the angle γ.  相似文献   

9.
We presented the X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) studies of heavy fermion compound CeAl2 bulk and 8 nm nanoparticles, performed at the Ce M4,5- and L3- absorption edges. XMCD and XAS revealed that Ce in bulk CeAl2 exhibits localized 4f1 character with magnetic ordering. The Ce in nanoparticles, on the other hand, shows a small amount delocalized 4f0 character with non-magnetic Kondo behavior. By applying general sum rules, an estimation of the orbital and spin contribution to those Ce 4f moments can be obtained. Our results also demonstrated that the magnetic behavior in CeAl2 is very sensitive to the degree of localization of the 4f electrons.  相似文献   

10.
L10‐FePt and exchange‐coupled L10‐FePt/Fe composite films are grown epitaxially on MgO(001) single crystal substrates and are subsequently large‐area patterned utilizing an electron beam lithography process with Ar+ ion etching. The patterning process of the continuous film system leads to a different demagnetization behavior resulting in an increase of the out‐of‐plane coercivity of the patterned samples. Due to exchange‐coupling between L10‐FePt and Fe the coercivity of the L10‐FePt/Fe composite patterns is reduced by 52% as compared to the coercivity of L10‐FePt patterns. From the analysis of the temperature dependence of the coercivity it follows that the dots include regions with reduced anisotropy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
李红红  王劼  郭玉献  王峰 《物理学报》2006,55(5):2633-2638
在4个方面研究了实验数据的预处理和应用加和定则中的问题.1)外磁场对样品电流法测量的吸收谱强度的影响.发现外磁场H<200×10-4T时,信号强度正比于H;当H>200×10-4T时,尽管外磁场继续增加,但信号强度基本保持不变.2)不同方向的电磁铁剩磁会导致吸收谱的分离.这种分离与入射光的偏振态和样品的磁性无关,可以通过乘以一个常数很好地消除这种分离.3)通过XPSPEAK 4.1对实验数据拟合,写出了吸收谱的解析函数.利用解析函数的积分值,建立一种相对“客观"的标准,判断在一定的实验条件下,不同的数值积分方法的准确性.4)以误差函数作为吸收谱的背景函数,建立了一套完整的X射线磁性圆二色的数据处理方法.最后用Bode积分法计算出20nm厚Co膜的轨道和自旋磁矩分别为0.141μB和1.314μB. 关键词: X射线磁性圆二色 加和定则 台阶函数 吸收谱拟合  相似文献   

12.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

13.
We use ab initio calculations to investigate spin and orbital moments of 3d transition-metal adatoms and Co nanostructures on Cu(0 0 1) surfaces. For Fe and Co adatoms on Cu(0 0 1) we predict extremely large orbital moments, comparable to the spin moments at these sites. For Mn and Cr adatoms the orbital moments are extremely small and can be neglected in face of their rather large spin moments. Ni adatoms on Cu(0 0 1) were found to be non-magnetic. Our investigations for adsorbed flat clusters of Co on Cu(0 0 1) address the persistence and extent of these large orbital moments in the clusters as a function of their size. We find that, the average orbital moment (Morb) per Co atom is strongly correlated with the coordination number, decreasing drastically and monotonically as the average number of first Co neighbors around the sites in the cluster (NCo) is increased.  相似文献   

14.
FexPt100−x(30 nm) and [FexPt100−x(3 nm)/ZrO2]10 (x = 37, 48, 57, 63, 69) films with different ZrO2 content were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of ZrO2 doping on the microstructural evolution, magnetic properties, grain size, as well as the ordering kinetics of FePt alloy films. The as-deposited films behaved a disordered state, and the ordered L10 structure was obtained by post-annealing. The magnetic properties of the films are changed from soft magnetism to hard magnetism after annealing. The variation of the largest coercivities of [FexPt100−x/ZrO2]10 films with the Fe atomic percentage, x and differing amounts of ZrO2 content reveals that as we increase the ZrO2 content we must correspondingly increase the amount of Fe. This phenomenon suggests that the Zr or O atoms of ZrO2 preferentially react with the Fe atoms of FePt alloy to form compounds. In addition, introducing the nonmagnetic ZrO2 can reduce the intergrain exchange interactions of the FePt/ZrO2 films, and the interactions are decreased as the ZrO2 content increases, the dipole interactions are observed in FePt/ZrO2 films as the ZrO2 content is more than 15%.  相似文献   

15.
This work develops a new method for growing L10 FePt(0 0 1) thin film on a Pt/Cr bilayer using an amorphous glass substrate. Semi-coherent epitaxial growth was initiated from the Cr(0 0 2) underlayer, continued through the Pt(0 0 1) buffer layer, and extended into the L10 FePt(0 0 1) magnetic layer. The squareness of the L10 FePt film in the presence of both a Cr underlayer and a Pt buffer layer was close to unity as the magnetic field was applied perpendicular to the film plane. The single L10 FePt(1 1 1) orientation was observed in the absence of a Cr underlayer. When a Cr underlayer is inserted, the preferred orientation switched from L10 FePt(1 1 1) to L10 FePt(0 0 1) and the magnetic film exhibited perpendicular magnetic anisotropy. However, in the absence of an Pt intermediate layer, the Cr atoms diffused directly into the FePt magnetic layer and prevented the formation of the L10 FePt(0 0 1) preferred orientation. When a Pt buffer layer was introduced between the FePt and Cr underlayer, the L10 FePt(0 0 1) peak appeared. The thickness of the Pt buffer layer also substantially affected the magnetic properties and atomic arrangement at the FePt/Pt and Pt/Cr interfaces.  相似文献   

16.
The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μB, while the orbital moment as high as 0.5 μB. The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5×4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment.  相似文献   

17.
We have studied the thermal stability of L10 FePt thin films and Fe–FePt exchange-spring (ES) bilayers grown on (1 0 0) MgO by RF sputtering. The viscosity curves showed both for FePt films and bilayers a clear logarithmic decay of magnetization. Moreover, it was possible to evaluate the viscosity coefficient S for different applied reverse fields and the activation volumes at the coercivity. The latter values were then related to structural, magnetic and morphological measurements performed on the samples.  相似文献   

18.
The formation of induced 5d magnetic moment on Ir in Fe100−x Ir x (x=3, 10 and 17) and Co100−x Ir x (x=5, 17, 25 and 32) alloys has been investigated by X-ray magnetic circular dichroism (XMCD) at Ir L2,3 absorption edges. Sum rule analysis of the XMCD data show that the orbital moment of Ir is in the range of −0.071(2)μB to −0.030(1)μB in Fe-Ir alloys and −0.067(2)μB to 0.024(1)μB in Co-Ir alloys. We find that the total moment of Ir in Fe-Ir alloys is approximately 1/5 of the total 3d moment on Fe at all the three compositions. In contrast, the total moment on Ir in Co-Ir alloys varies between 1/6 to 1/16 of the 3d moment on cobalt. The observed trends of Ir moments and the role of interatomic exchange interactions in 5d moment formation are discussed.  相似文献   

19.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

20.
We propose a reactive ion etching (RIE) process of an L10-FePt film which is expected as one of the promising materials for the perpendicular magnetic recording media. The etching was carried out using an inductively coupled plasma (ICP) RIE system and an etching gas combination of CH4/O2/NH3 was employed. The L10-FePt films were deposited on (1 0 0)-oriented MgO substrates using a magnetron sputtering system. The etching masks of Ti were patterned on the FePt films lithographically. The etch rates of ∼16 and ∼0 nm/min were obtained for the FePt film and the Ti mask, respectively. The atomic force microscopy (AFM) analyses provided the average roughness (Ra) value of 0.95 nm for the etched FePt surface, that is, a very flat etched surface was obtained. Those results show that the highly selective RIE process of L10-FePt was successfully realized in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号