首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have explored the interlayer diffusion effect of Ge/FePt, GePt/FePt bilayer on the formation of ordered L10 FePt phase. In Ge/FePt bilayer, the Ge3Pt2 compound was formed during post annealing at 400oC for 1.0 h. Diffusion between Ge and FePt layer suppres the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 400 °C and the in-plane coercivity was 9.3 kOe. The ordering temperature was reduced about 50 °C compared to the single layer FePt film.  相似文献   

2.
This work develops a new method for growing L10 FePt(0 0 1) thin film on a Pt/Cr bilayer using an amorphous glass substrate. Semi-coherent epitaxial growth was initiated from the Cr(0 0 2) underlayer, continued through the Pt(0 0 1) buffer layer, and extended into the L10 FePt(0 0 1) magnetic layer. The squareness of the L10 FePt film in the presence of both a Cr underlayer and a Pt buffer layer was close to unity as the magnetic field was applied perpendicular to the film plane. The single L10 FePt(1 1 1) orientation was observed in the absence of a Cr underlayer. When a Cr underlayer is inserted, the preferred orientation switched from L10 FePt(1 1 1) to L10 FePt(0 0 1) and the magnetic film exhibited perpendicular magnetic anisotropy. However, in the absence of an Pt intermediate layer, the Cr atoms diffused directly into the FePt magnetic layer and prevented the formation of the L10 FePt(0 0 1) preferred orientation. When a Pt buffer layer was introduced between the FePt and Cr underlayer, the L10 FePt(0 0 1) peak appeared. The thickness of the Pt buffer layer also substantially affected the magnetic properties and atomic arrangement at the FePt/Pt and Pt/Cr interfaces.  相似文献   

3.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

4.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

5.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

6.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

7.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

8.
FePt multilayer films with and without Al underlayer were prepared by magnetron sputtering on SiO2 substrate and subsequently annealed in vacuum. Experimental results suggest that the existence of Al underlayer can effectively reduce the ordering temperature and increase the coercivity of FePt films. Due to the slight larger lattice constant of Al underlayer than that of FePt films, [Fe (0.66 nm)/Pt (0.84 nm)]30 films begin to order at 350 °C and the coercivity of them reach to 5.7 kOe after annealing at 400 °C for half an hour.  相似文献   

9.
The deposition monolayers of L10 FePt nanoparticles via an electrospraying method and the magnetic properties of the deposited film were studied. FePt nanoparticles in a size of around 2.5 nm in diameter, prepared by a liquid process, were used as a precursor. The size of the deposited particles can be controlled up to 35 nm by controlling the sprayed droplet size that is formed by adjusting the precursor concentration and the precursor flow rate. The droplets were heated in a tubular furnace at a temperature of up to 900 °C to remove all organic compounds and to transform the FePt particles from disordered face centered cubic to an ordered FCT phase. Finally, the particles were deposited in the form of a monolayer film on a silicon substrate by electrostatic force and characterized by scanning electron microscopy. The monolayer of particles was obtained by the high charge on particles obtained during the electrospraying process. The magnetic properties of the monolayer were investigated by magneto-optic Kerr effect measurements. Coercivity up to 650 Oe for a film consisting of 35 nm L10 FePt nanoparticles was observed after heat treatment at a temperature of 800 °C.  相似文献   

10.
FePt and FePt/Cr films were epitaxially grown on MgO (2 0 0) substrates at 350 °C by DC magnetron sputtering. The structural properties and epitaxial relationship are investigated by high-resolution X-ray diffraction (XRD). The XRD spectra revealed that both FePt and FePt/Cr films had a (0 0 1) preferred orientation. However, FePt films with Cr underlayers had a larger a and a smaller c than those of the samples without Cr underlayers. Furthermore, the FePt (0 0 1) peak characterized by its rocking curves became less pronounced when the Cr underlayer was applied. The off-spectra from the MgO (1 1 1), Cr (1 0 1) and FePt (1 1 1) demonstrated that the epitaxial relationship between the FePt film, Cr underlayer and MgO substrate was confirmed to be FePt (0 0 1)<100> || Cr (1 0 0)<1 1 0> || MgO (1 0 0)<0 0 1>. The domain size and Ms decreased when the Cr underlayer was applied due to the diffusion of Cr and the existence of the initial layer between Cr and FePt layers.  相似文献   

11.
A method based on strain-induced phase transformation was used to lower the ordering temperature of FePt films. The strain resulted from the lattice mismatch between the FePt film and the substrate or underlayer favored the ordering. The relationships between the lattice mismatch, the ordering of FePt film, and the corresponding magnetic anisotropic constant were investigated. A critical lattice mismatch near 6.33% was believed to be most suitable for improving the chemical ordering of the FePt films. CrX (X=Ru, Mo, W, Ti) alloys with (2 0 0) texture was used to control the easy axis and ordering temperature of FePt films on glass substrate. Large uniaxial anisotropy constant Ku?1×107 erg/cm3, good magnetic squareness (∼1) and FePt(0 0 1) texture (rocking curve −5°) were obtained at the temperature Ts?250 °C when using CrRu underlayer. The diffusion from overlying layers of Ag and Cu and an inserted Ag pinning layer were effective in reducing the exchange decoupling and changing the magnetization reversal. The media noise was effectively reduced and the SNR was remarkably enhanced when a 2 nm Ag was inserted.  相似文献   

12.
Interlayer exchange coupling in dc-magnetron sputtered Tb29.6Co70.4/FePt bilayers with different annealing temperatures of the FePt film have been investigated. The dependence of ordering degree on perpendicular magnetic properties of the FePt film was studied. The Tb29.6Co70.4/FePt film has high perpendicular coercivity and high saturated magnetization about 7.5 kOe, and 302 emu/cm3, respectively as the substrate temperature is 500 °C and annealing at 500 °C for 30 min. It also shows a strong exchange coupling between this FePt layer and Tb29.6Co70.4 layer. We also examined the interface wall energy in the exchange coupled Tb29.6Co70.4/FePt double layers.  相似文献   

13.
The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 °C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase.  相似文献   

14.
FePt films were deposited on Cr1-xMox underlayers by dc magnetron sputtering. The effects of the Mo content in the underlayers, underlayer thickness, substrate temperature, and FePt film thickness on the structural and magnetic properties of the FePt films were studied. Experimental results showed that the (200) textured Cr90Mo10 film was a promising underlayer for promoting the growth of the L10 FePt films with (001) preferred orientation at relatively low temperatures. With the Cr90Mo10 underlayers, the ordering process of the FePt films could start at 200 °C. Both the ordering degree and the out-of-plane coercivity (Hc) of the FePt films increased with an increase in substrate temperature. When the substrate temperature was ≥250 °C, the FePt films grown on the Cr90Mo10 underlayers could have the (001) preferred orientation. The FePt films grown on the Cr90Mo10 underlayers at different temperatures showed a continuous microstructure. The out-of-plane coercivities Hc decreased while the ordering degree increased with increased FePt film thickness, which could be due to the variation of the magnetic reversal mechanism from rotation predominant mode to domain wall motion predominant mode. PACS 68.55.Jk; 75.50.Ss  相似文献   

15.
Behavior of N atoms in atomic-order nitrided Si0.5Ge0.5(1 0 0) by heat treatment in Ar at 600 °C was investigated by X-ray photoelectron spectroscopy (XPS). For thermal nitridation by NH3 at 400 °C, nitridation of surface Si atoms tends to proceed preferentially over nitridation of surface Ge atoms. It is also clear that, with the heat treatment, nitridation of Si atoms proceeds by transfer of N atoms from Ge atoms. Angle-resolved XPS results show that Ge fraction beneath the surface nitrided layer increases significantly at 600 °C compared to the initial surface. These results indicate that preferential nitridation of Si atoms at surface over Ge atoms induces Ge segregation beneath the surface nitrided layer at higher temperatures above 400 °C.  相似文献   

16.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

17.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

18.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

19.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

20.
FexPt100−x(30 nm) and [FexPt100−x(3 nm)/ZrO2]10 (x = 37, 48, 57, 63, 69) films with different ZrO2 content were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of ZrO2 doping on the microstructural evolution, magnetic properties, grain size, as well as the ordering kinetics of FePt alloy films. The as-deposited films behaved a disordered state, and the ordered L10 structure was obtained by post-annealing. The magnetic properties of the films are changed from soft magnetism to hard magnetism after annealing. The variation of the largest coercivities of [FexPt100−x/ZrO2]10 films with the Fe atomic percentage, x and differing amounts of ZrO2 content reveals that as we increase the ZrO2 content we must correspondingly increase the amount of Fe. This phenomenon suggests that the Zr or O atoms of ZrO2 preferentially react with the Fe atoms of FePt alloy to form compounds. In addition, introducing the nonmagnetic ZrO2 can reduce the intergrain exchange interactions of the FePt/ZrO2 films, and the interactions are decreased as the ZrO2 content increases, the dipole interactions are observed in FePt/ZrO2 films as the ZrO2 content is more than 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号