首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two different approaches to reduce the intermediate layer (IL) thickness in perpendicular recording media are proposed. Such a reduction in IL thickness could lead to improvement in writability and recording performance. The first approach involved the introduction of a magnetic intermediate layer (MIL), to obtain C-axis growth. Media with CoCr alloy layer as the MIL were studied. Reasonably good C-axis growth with a Δθ50 of about 3.8° could be obtained for MIL thickness of about 10 nm. Noise could be controlled by introducing exchange-breaking layers. The other approach involved the use of crystalline soft underlayers (SUL) to obtain suitable growth conditions for the recording layers. For this purpose, CoFeTaCr alloys with a FCC(1 1 1) texture were prepared. A good C-axis dispersion in the recording layer with a Δθ50 of about 3.1° could be obtained for IL thickness of about 5 nm. The present study indicates that the recording medium deposited on crystalline SUL is relatively noisier than that deposited on amorphous SUL. Reducing the noise of the crystalline SUL is a way towards higher areal densities.  相似文献   

2.
The distribution of easy axis orientation in perpendicular media is of technological importance because it affects the value of S* (see Fig. 1), which quantifies the switching field distribution (SFD) and hence partially determines the data density achievable on a given medium. The distribution is controlled by the crystallographic orientation of grains and factors such as intergranular exchange and dipolar coupling. Due to strong demagnetising fields in the perpendicular orientation, traditional measurements of remanence as a function of angle are difficult to interpret and have required the use of large-scale computational models. In this work we have utilised the variation of coercivity HC with angle, which has the advantage that at HC the global demagnetising field is zero. Additionally, since such materials follow essentially the Stoner–Wohlfarth mode of reversal, the variation of HC with angle, HC(θ), is much greater than that for the remanence. We find that for (CoCrPt)1−x(SiO2)x, where the level of exchange coupling is controlled, the distribution of magnetic easy axes is narrower when the exchange coupling is reduced, but dipolar coupling between the grains is strong and affects the magnetisation reversal significantly.  相似文献   

3.
The effect of soft layer thickness (tSoft) of CoTaZr–SiO2 and low Pt-containing CoCrPtO layers on media properties in hard/soft (H/S) stacked media is compared to media properties in conventional capping layer (CL) media. Coercivity and coercivity squareness in H/S stacked media continuously decrease with increasing tSoft, while they increase in CL media. H/S stacked media with CoTaZr–SiO2 layers having higher saturation magnetization and in-plane magnetic anisotropy constant exhibit stronger demagnetization effect. Compared to CL media, H/S stacked media with CoCrPtO soft layers improve signal-to-noise ratio and magnetic write width. However, the use of a relatively soft layer deteriorates adjacent track erasure and does not improve media writeability due to compensation effect between softer and harder layers to be used. These phenomena can be understood as undesirable side effects of a soft layer: higher demagnetization field and larger lattice mismatch.  相似文献   

4.
We introduce our recent experimental results for three blocked layers for currently used perpendicular recording media; a recording layer (RL: for recording), a soft magnetic underlayer (SUL: magnetic flux path in writing), and a nonmagnetic intermediate layer (NMIL: underlayer of RL and separation layer between RL and SUL). For the NMIL, uniaxial crystallographic symmetry is an essential requirement for suppression of variant growth of magnetic grains in granular-type RL. From this view point, AlN with wurtzite structure and materials with pseudo-hcp structure, which means fcc structure with stacking faults, were found to be effective. For the SUL, disordered hcp CoIr with negative Ku were found to well suppress both spike noise and track erasure due to a wide distribution of magnetic flux under the return yoke in writing and formation of a Neel wall instead of a Bloch wall in the SUL. For the RL, positive-/negative-Ku stacked media with incoherent switching mode was found to be effective in order to solve the recent write-ability problem for high Ku RL material with high thermal stability. Applying all these items, an advanced medium concept with the stacking structure of “CoPtCr-oxide/CoIr-oxide/CoIr/pseudo-hcp nonmagnetic layer/substrate” is very promising from the view point of (1) switching field reduction of a RL with high Ku material, (2) conventional amorphous SUL free, and (3) conventional NMIL free.  相似文献   

5.
Pd nanocluster seeds were formed on a soft magnetic underlayer (SUL) using an electrochemical substitution reaction, and were utilized as an intermediate layer for a Co/Pd multilayered ([Co/Pd]n) perpendicular magnetic recording medium. A CoNiFeB film prepared with electroless deposition was used as SUL, which was immersed into a PdCl2 solution for the formation of Pd seeds. The Pd seeds were found to effectively reduce the size of magnetic domains in the [Co/Pd]n film deposited on them. The optimization of the concentration of the PdCl2 solution and the use of the pretreatment process with a SnCl2 solution were effective to obtain the smooth SUL surface with fine Pd seeds as small as 5 nm. The 20 nm-thick [Co/Pd]n film deposited on the optimized Pd seeds/CoNiFeB SUL exhibited a high coercivity of 7.8 kOe and a small magnetic domain size of 69 nm. These results indicated that the combination of the Pd seeds and the electroless-deposited SUL was desirable in terms of the improvement not only in the magnetic properties of [Co/Pd]n media but also in the mass productivity of the underlayer.  相似文献   

6.
The natural cuprate botallackite, Cu2Cl(OH)3, is found to be a new antiferromagnet with Magnetic susceptibility properties under strong field show non-linear M-H properties indicating metamagnetism. The TN and the super-exchange coupling are discussed and compared with its polymorph atacamite and other copper oxides on the basis of their structural parameters.  相似文献   

7.
FeNiN thin films with good soft magnetic properties were synthesized on Si (1 0 0) substrates at 473 K by RF magnetron sputtering. The dependence of phase structure and magnetic properties on nitrogen partial pressure, nickel concentrations, film thickness and substrate temperature were systematically investigated. The phase evolution from α-(Fe,Ni)N to ξ-(Fe,Ni)2N with increase of nitrogen partial pressure was seen. The addition of Ni caused FeNiN films to turn from BCC structure to FCC structure. Clear reproducible striped domains appeared at the film surfaces when XNi=19.6%, which is explained by the high enough perpendicular anisotropy and the small stress in the film. All films show smooth surfaces and good soft magnetic properties compared to corresponding FeN compounds. The magnetic properties depended dramatically on the phase structure. Optimum soft magnetic properties with HC of <1 Oe are obtained between 5.0%?XNi?10.0%.  相似文献   

8.
The time dependence of remanence coercivity and thermal stability were investigated for hard/soft-stacked media consisting of a magnetically hard granular layer underneath a very thin soft layer with a large saturation magnetization, Ms. The values of remanence coercivity at measurement times t′=103 and 10−5 s (pulse field) were measured, and defined as Hr and HrP. The remanence coercivity on the recording time scale, Hr (1 ns), and the energy barrier, ΔE/kT, were evaluated by fitting Hr and HrP to Sharrock's equation taking into account the power law variation of the energy barrier, n. The value of Hr (1 ns) for a (Co–Pt)–SiO2 (9 nm)/Co–SiO2 (2 nm) stacked medium with an interfacial coupling control layer was about 9 kOe, which was less than half of that of a (Co–Pt)–SiO2 (9 nm) conventional medium (=21.3 kOe). The value of ΔE/kT for the stacked medium was about 111 (n=0.7), and was not significantly different from the conventional medium. Moreover, no significant difference in the rate of decrease of Hr with increasing temperature was observed between media with and without interlayers. These results indicate that the use of a thin soft layer with high Ms was effective at significantly reducing Hr with no notable change in thermal stability.  相似文献   

9.
FePt multilayer composite films with and without B4C interlayer have been prepared by magnetron sputtering, respectively, and subsequent annealing in vacuum. It was found that the B4C layers effectively serve as spacers to separate the FePt layers, enhancing (0 0 1) orientation of FePt alloy. Our results show that highly (0 0 1) oriented FePt/B4C films have significant potential as perpendicular recording media.  相似文献   

10.
Ni80Fe20/SiO2/Cu composite wires of Cu core 60 μm in diameter and coated with layers of SiO2 and Ni80Fe20 were prepared by RF magnetron sputtering. The influences of the insulator layer thickness, the measurement mode and the magnitude of the driving current on the giant magneto-impedance (GMI) effect were investigated. The results showed that there was an optimum thickness of the insulator layer and the driving current can influence the shape of the MI curve. Resonance enhancement of the GMI was found in the new measurement mode. The results are discussed by taking account of the electromagnetic interactions.  相似文献   

11.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

12.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

13.
Surface roughness caused by the grain growth of the RuCr non-magnetic intermediate layer (NMIL) was evaluated using the X-ray total reflection method. In the case of Ru NMIL, the value of root mean square roughness of NMIL (σ) increases from 0.59 to 1.45 nm with increase in Ar gas pressure and/or thickness of the Ru layer. Judging from the loop slope and normalized coercivity, the degree of magnetic isolation increases as σ increases, independent of the Cr content of a RuCr NMIL. Furthermore, it was found that σ of NMIL is strongly correlated with wettability to the seed layer material and is enhanced by the lattice extension of NMIL.  相似文献   

14.
The SiNx (20 nm)/Tb30Co70 (90 nm)/SiNx (5 nm)/Co (3–37 nm)/SiNx (10 nm)/Si multilayer films are deposited on naturally oxidized Si wafer by magnetron sputtering. The saturation magnetization (Ms) of the multilayer films is increased with the thickness of high Ms ferromagnetic Co layer. The perpendicular coercivity (HcHc) value is increased with Co layer thickness as the thickness of the Co layer is lower than 15 nm and then decreases drastically when the thickness of the Co layer further increased. The increase of the HcHc value is owing to the interlayer exchange effect [Li Zhang, Physica B 390 (2007) 373] between TbCo and Co layers. Co under-layer with in-plane magnetic anisotropy would pin the magnetic moment of the TbCo layer near by the Co layer and cause the value of HcHc to increase. However, as the Co layer is thicker than a critical thickness, the HcHc value of the multilayer film would decrease. Therefore, the Co layer with in-plane magnetic anisotropy and soft magnetic properties is expected to dominate the magnetic properties of the multilayer films.  相似文献   

15.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

16.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

17.
18.
Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-Bs FeCo soft underlayer (SUL). A CoPt–TiO2 recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high Hc of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm.  相似文献   

19.
ErCu2Si2 crystallises in the tetragonal ThCr2Si2-type crystal structure. In this paper results of magnetometric, electrical transport, specific heat as well as neutron diffraction are reported. Results of electrical resistivity and specific heat measurements performed at low temperature yield existence of magnetic ordering roughly at 1.3 K. These results are in concert with neutron diffraction measurements, which reveal simple antiferromagnetic ordering between 0.47 and 1.00 K. At temperatures ranging from 1.00 up to 1.50 K an additional incommensurate magnetic structure was observed. The propagation vector k=(0;0;0.074) was proposed to describe magnetic reflections within the amplitude modulated magnetic structure. Basing on specific heat studies the crystal field levels splitting scheme and magnetic entropy were calculated.  相似文献   

20.
The microstructures of Co2FeAl and Co2(Cr0.4Fe0.6)Al sputtered films and of their magnetic tunnel junctions (MTJs) have been investigated to discuss the possible reasons for an unexpectedly low tunneling magnetoresistance (TMR). The structure of the Co2FeAl film changed from B2 to L21 with increasing substrate temperature, while that of the Co2(Cr0.4Fe0.6)Al film remained B2 up to 500 °C. The thermodynamically predicted phase separation was not observed in the films. The low TMR values obtained from the MTJs using the Co2FeAl and Co2(Cr0.4Fe0.6)Al films are attributed to the low-spin polarization expected from the low degree of order in these films. The TMR values depend sensitively on the interfacial structure of the tunnel junctions when the degree of order of the film is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号