首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
A systematic investigation of the structural, magnetic and electrical properties of a series of nanocrystalline La0.7SrxCa0.3−xMnO3 materials, prepared by high energy ball milling method and then annealed at 900 °C has been undertaken. The analysis of the XRD data using the Win-metric software shows an increase in the unit cell volume with increasing Sr ion concentration. The La0.7SrxCa0.3−xMnO3 compounds undergo a structural orthorhombic-to-monoclinic transition at x=0.15. Electric and magnetic measurements show that both the Curie temperature and the insulator-to-metal transition temperature increase from 259 K and 253 K correspondingly for La0.7Ca0.3MnO3 (x=0) to 353 K and 282 K, respectively, for La0.7Sr0.3MnO3 (x=0.3). It is argued that the larger radius of Sr2+ ion than that of Ca2+ is the reason to strengthen the double-exchange interaction and to give rise to the observed increase of transition temperatures. Using the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the resistivity versus temperature data measured in the range of 50-320 K and found that the activation barrier decreased with the raising Sr2+ ion concentration.  相似文献   

2.
3.
We report the results of the temperature-dependent neutron diffraction measurements on the nearly half-doped (La0.325Tb0.125)(Ca0.3Sr0.25)MnO3 manganite sample. The simultaneous doping of magnetic Tb3+ and divalent Sr2+ in the La0.7Ca0.3MnO3 system results into a large A-site size disorder. Rietveld refinement of neutron diffraction data reveal that the single phase sample crystallizes in a distorted orthorhombic structure. Increased 〈rA〉 value affects the transport behavior that results into an insulating-like behavior of the sample. Under application of 1 T field sample exhibit insulating-like behavior while insulator-metal transition (TIM) is exhibited under 5 and 8 T fields. Variable range hoping (VRH) mechanism of charge carriers is exhibited in the insulating region. Field cooled and zero field cooled magnetization measurement shows the Curie temperature (TC)~47 K. The refinement of the ND data collected at various temperatures below 300 K shows that there is no structural phase transition in the compound. Around 100 K, a magnetic peak appears at lower angle that can be ascribed to the presence of the A-type antiferromagnetic (AFM) phase. Two more peaks are observed around 50 K at lower angles that can be fitted in CE-type antiferromagnetic phase. Splitting of the peaks at lower temperatures is the signature of orbital ordering in the presently studied nearly half-doped manganite system. Results of the detailed structural analysis of the temperature-dependent ND measurements on (LaTb)0.45(CaSr)0.55MnO3 sample has been discussed in the light of coexisting A-type and CE-type antiferromagnetic phases present in the sample at low temperature.  相似文献   

4.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

5.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.  相似文献   

6.
In this study, magnetic and magnetocaloric properties of Pr0.68Ca0.32−xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds were investigated. X-ray results indicated that all the samples have a single phase of orthorhombic symmetry. The orthorhombic unit cell parameters increase with the increase in Sr content. Large negative magnetic entropy changes (−26.2 J/kg K at 38 K and 5 T for x=0 and −6.5 J/kg K at 83 K and 6 T for x=0.1) were attributed to ultrasharp metamagnetic transitions. The peak value of ΔSm decreased from −4.1 J/kg K for x=0.18 sample to −2.4 J/kg K for x=0.32 at 1 T magnetic field.  相似文献   

7.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application.  相似文献   

8.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

9.
In this work, the technique of electron magnetic resonance (EMR) is used to measure the magnetic resonant spectra of La0.7Sr0.3MnO3 nanoparticles synthesized by sol–gel routes with three different gelation agents (S1: Urea+citric acid; S2: citric acid, and S3: Urea+tri-sodium citrate). The purpose of this study is to investigate the influence of synthesis conditions on the magnetic properties of nanoparticles. Our ESR results show that Curie temperatures of La0.7Sr0.3MnO3 nanoparticles with different gelation agents are slightly different (Tc∼340 to 360 K) and possess both paramagnetic (PM) and ferromagnetic (FM) phases in the temperature below Tc. Besides, a sharp FM–PM transition indicates that the combined agent of Urea+tri-sodium citrate creates a better quality in CMR nanomagnets.  相似文献   

10.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

11.
The influence of first and second order magnetic phase transitions on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3 materials has been investigated. Large low-field-induced magnetic entropy changes are observed in La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3 materials. The La0.7Ca0.3MnO3 material experiences a large entropy change with a first-order magnetic phase transition at the Curie temperature, TC. On the other hand, La0.7Ca0.3Mn0.95Co0.05O3 displays a smaller entropy change with a second order phase transition. While a first-order magnetic transition material induces a larger MCE (7.528 J/kg K at 5 T) at TC, this is limited to a narrow temperature range, resulting in a relatively small RCP (218 J/kg), while the Co-doped second-order magnetic transition material induces a smaller MCE (7.14 J/kg K for 5 T), but it is spread over a broader temperature range, resulting in a larger RCP (308 J/kg). The maximum magnetoresistance (MR, defined as ρ(0)/ρ(H)-1) under a field of 5 T is about 206% and 333% for La0.7Ca0.3MnO3 and La0.7Ca0.3Mn0.95Co0.05O3, respectively. The refrigeration capacity (RCP) is enhanced in La0.7Ca0.3Mn0.95Co0.05O3 (by about 41%) due to small changes from Co doping. The magnetocaloric features of these materials at lower magnetic fields (MCE=3.163 for La0.7Ca0.3Mn0.95Co0.05O3 and 4.63 J/kg K for La0.7Ca0.3MnO3 at 1 T), and the high RCP and MR can provide some ideas for exploring novel magnetic refrigerants that can operate with permanent magnets rather than superconducting ones as the magnetic field source.  相似文献   

12.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

13.
Following the double metal-insulator peaks found in series of perovskite manganites La0.7−xPrxPb0.3MnO3 (x=0, 0.05, 0.1), the magnetic entropy change of La0.6Pr0.1Pb0.3MnO3 was carefully investigated as a representative. The maximum magnetic entropy change (ΔSH=−1.7 J/kg K at 300 K) and the expanded refrigerant capacity (about 123.8 J/kg) had been obtained under 10 kOe magnetic field variation, though the double peak of maximum magnetic entropy change had not occurred since the comparative faint magnetic signal from the Pr ions inhomogeneity existed in the octahedral frame submerged in the strong magnetic signal originated from the dominating octahedral frame both in the double exchange mechanism, but the width at half maximum in the magnetic entropy change comparatively broadened.  相似文献   

14.
Double layered manganite of La1.4Ca1.6Mn2O7 (DLCMO) was prepared using solid state reaction method and had a metal-insulator transition temperature (TMI) of 125 K. The short range 2D-feerromagnetic ordering (TC2) starts growing when T<168 K and it gets converted into 3D-ferromagnetic ordering (TC1) at 114 K. Low field magnetoresistance (MR) behaviour of the DLCMO was investigated and compared with an infinite layered manganite La0.7Ca0.3MnO3 (LCMO). For DLCMO, in the temperature range between TC1 and TC2, the MR showed a gradual increase with the magnetic field. The observed MR and R-T behaviour of double layered manganite for TC1<T<TC2 has been explained in the frame work of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions] and percolative behaviour of transport in FM-PM mixture.  相似文献   

15.
Series of polycrystalline manganese perovskite oxides La0.7−xNdxPb0.3MnO3 (x=0, 0.05, and 0.1) are prepared by the sol-gel technique, La0.65Nd0.05Pb0.3MnO3 were representatively investigated because the peculiar double resistivity peaks were found; the maximum magnetic entropy change ΔSH=−2.03 J/kg K and its good refrigerant capacity 71.05 J/kg around room temperature were obtained under 9 kOe magnetic field variation. The expected double peaks of magnetocaloric effect had not occurred since magnetic entropy change originated from the differential coefficient of magnetic moment to temperature; the relatively well refrigerant capacity possibly results from the faint magnetic inhomogeneity mixed in the double exchange strong magnetic signal.  相似文献   

16.
The electrical transport and magnetic properties of high Bi doped (La0.73Bi0.27)0.67Ca0.33MnO3 are studied at the temperature and magnetic field ranges from 10 to 300 K and 0 to 3 T. Significant temperature and magnetic field hystereses are observed in both resistivity and magnetization measurements. Meanwhile, an enhanced magnetoresistance effect, within a wide temperature window, is obtained in the (La0.73Bi0.27)0.67Ca0.33MnO3. The hysteresis and enhanced magnetoresistance are discussed based on an inhomogeneous metastable structure related to the Bi dopant.  相似文献   

17.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

18.
We have synthesized a series of La0.7(Ca0.3−xCex)MnO3 (0≤x≤0.2) by standard solid-state reaction method. X-ray diffraction (XRD) measurement was carried out for structural studies and Rietveld refinement was done for structural analysis. The transport properties were studied using four probe technique. The temperature dependence of the resistivity was measured in the temperature range of 20 K to room temperature. It is found that all samples show a systematic variation in metal to insulator transition at transition temperature (TP) and resistivity (ρ) with the relative concentration of hole and electron doping in the system. The samples showed varying amounts of colossal magnetoresistance depending upon temperature and applied magnetic field. The magnetoresistance values as high as 72% were observed in x=0 sample.  相似文献   

19.
The magnetic dynamics of charge ordered Nd0.8Na0.2MnO3 compound was studied by measuring the temperature variation of magnetization for different magnetic fields up to 7 T and, the field variation of magnetization at different temperatures down to 5 K. This sample exhibits a charge-ordering transition at 180 K, followed by a weak ferromagnetic (FM) transition at around 100 K and a spin glass like transition below 40 K. Suppression of charge-ordering and spin glass like transition and increase in FM TC were observed with an increase in magnetic field. A reversible metamagnetic transition above a threshold field (Hf) of 4.5 T was observed at 130 K, followed by a saturation magnetization of 3.2 μB/f.u. However at 5 K, an irreversible field induced first order phase transition from charge ordered state to FM state was observed at Hf=5 T. For comparison, the temperature and field variations of magnetization were studied on a FM compound from the same series with the composition Nd0.90Na0.10MnO3. A clear FM transition with a TC of 113 K and a saturation magnetization of 4.3 μB/f.u was observed.  相似文献   

20.
Thermal conductivity (λ) of nanocrystalline La0.67(CaxSr1−x)0.33MnO3 (x=0, 0.5, 1) and La0.6Y0.07Ca0.33MnO3 pellets prepared by a novel ‘pyrophoric’ method have been studied between the temperature range 10 and 300 K. Our data show that the magnitude of thermal conductivity is strongly influenced by the ion substitutions at La-site. The analysis of the thermal conductivity data indicates that the thermal transport is governed largely by phonons scattering in these systems and the electronic contribution is as small as 0.2-1% of total thermal conductivity (λtotal). At low temperatures (<90 K) 2D like lattice defects contribute to the phonon scattering dominantly and its strength increases with increasing Sr content and also with partial substitution of La by Y. Depending upon the composition of the samples, the magnon thermal conductivity contributes 2-15% of λtotal close to TC. In the paramagnetic regime the unusual increase in λtotal keeps signature of large dynamic lattice distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号