首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni81Fe19/Ir20Mn80/Co90Fe10/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of 〈1 1 1〉 texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and Hex and Hc was not observed. L12 phase IrMn3 could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses.  相似文献   

2.
A conventional Ta/NiFe/Cu/NiFe/FeMn/Ta spin valve multilayer was prepared to investigate the exchange bias variations of the pinned NiFe layer. An exchange bias field of 560 Oe has been found in a valve multilayer with ultra-thin pinned NiFe layers (1 nm), in which a large constant magnetic field of 700 Oe was applied during film deposition procession. The observed results are attributed to the large applied magnetic field, which produced more net spins of the antiferromagnet at the interface. These interfacial uncompensated spins provide the net spin moments required for exchange coupling and bias.  相似文献   

3.
Co/Cu/NiFe trilayers were prepared by sputtering without magnetic field applied. We have found that the Co(2 nm)Cu(1 nm)NiFe(2 nm) trilayer using Ta as buffer layer exhibits an enhanced magnetoresistance (MR) sensitivity by a factor of more than 6 and a low saturation field of 9.3 Oe. Experimental results have demonstrated that the low saturation field is attributed to the softening of the Co layer by depositing the Co(2 nm)Cu(1 nm)NiFe(2 nm) sandwich on Ta layer. The decrease of the coercivity of the Co layer also plays an important role in the enhancement of MR sensitivity by reducing the effective coercivity of the NiFe layer, which is discussed in terms of the change in interlayer coupling.  相似文献   

4.
A conventional Ta/NiFe/Cu/NiFe/FeMn spin valve was prepared to investigate the exchange bias properties with the variations of deposition field. By enhancing the deposition magnetic fields from 50 to 650 Oe, increase of exchange bias fields at a given thickness of the pinned NiFe layer has been found in the spin valves. In this paper, we show that this increase is due to the change of magnetic moment distribution at the ferromagnetic and antiferromagnetic interface by comparison of measured results with the interfacial uncompensated model. Therefore, by enhancing deposition magnetic fields, a large exchange-coupling field can be achieved in relatively thicker magnetic films for application.  相似文献   

5.
MgO-based magnetic tunnel junctions (MTJs) with a layer sequence Ir22Mn78 or Fe50Mn50 (10 nm)/CoFe (2 nm)/Ru (0.85 nm)/CoFeB (0.5?t<2 nm)/MgO (2.5 nm)/CoFeB (3 nm) have been fabricated. The bias voltage dependence of tunneling magnetoresistance (TMR) is given as a function of the annealing temperature for these MTJs, which shows the TMR ratio changes its sign from inverted to normal at a critical bias voltage (VC) when an unbalanced synthetic antiferromagnetic stack CoFe/Ru/CoFeB is used. VCs change with the thickness of the pinned CoFeB and annealing temperature, which implies one can achieve different VCs by artificial control. The asymmetric VC values suggest that a strong density-of-states modification occurs at bottom oxide/ferromagnet interface.  相似文献   

6.
An ultra-thin Co or CoFe diffusion barrier inserted at the NiFe/Cu interfaces was revealed to effectively control the electrical and magnetic stability of NiFe/Cu/NiFe-based giant magnetoresistance (GMR) spin-valve spintronics devices (SVSDs) operating at high current density. It was found that the activation energy, Ea, related to the electromigration (EM)-induced inter-diffusion process for the patterned NiFe(3)/Cu(2)/NiFe(3 nm) magnetic multi-layered devices (MMLD) was remarkably increased from 0.52±0.2 eV to 1.17±0.16 eV after the insertion of an ultra-thin Co diffusion barrier at the NiFe/Cu interfaces. The dramatically reduced “current shunting paths” from the Cu spacer to the NiFe thin films and the development of “self-healing process” resulted from the effectively restrained Cu inter-diffusion (intermixing with Ni atoms) due to the diffusion barriers were found to be primarily responsible for the improvement of electrical and magnetic stability. The further investigation on the effects of controlling Cu spacer inter-diffusion by diffusion barriers on the EM and thermomigration (TM)-induced magnetic degradation was carried out for the NiFe/(Co or Co90Fe10)/Cu/(Co or Co90Fe10)/NiFe/FeMn top exchange-biased GMR (EBGMR) SVSDs electrically stressed under the applied DC current density of J=2.5×107 A/cm2 (I=16.5∼17.25 mA). It was clearly confirmed that the Co and the CoFe diffusion barriers effectively control the Cu spacer inter-diffusion resulting in a smaller reduction in both GMR ratio and exchange bias field of the EBGMR SVSDs. Furthermore, it was obviously observed that the effects of CoFe diffusion barrier on controlling the Cu spacer inter-diffusion are more significant than that of Co. The effectively reduced Mn atomic inter-diffusion at the NiFe/FeMn interface and the well-maintained interfacial spin-dependent scattering resulted from the control of EM and TM-induced Cu spacer inter-diffusion were the main physical reasons for the significant improvement of magnetic and electrical degradation of top EBGMR SVSDs.  相似文献   

7.
A novel photonic crystal fiber sensing theory filled with magnetic fluid is proposed based on the change of the MF refractive index under varied magnetic field. The magnetically induced tuning of the magnetic fluid filled PCF propagation properties were investigated by the full-vector finite element method with a perfectly matched layer. Theoretical calculations show that both the effective refractive index and the effective mode area increase vs. the increased magnetic field, and the PCF filled MF with larger d/Λ is more sensitive to magnetic field. When the wavelength λ = 1550 nm, the duty ratio d/Λ = 0.9, d/Λ = 0.6, the effective refractive indexes increase respectively from 1.598279 to 1.617572, from 1.61948 to 1.632484, and the effective mode areas increase respectively from 3.561115 μm2 to 7.052360 μm2, from 6.167494 μm2 to 37.221998 μm2 as the magnetic field changes from 25 Oe to 175 Oe. This scheme provides theoretical foundation to use magnetic field to control light in photonic crystal fiber and also offers a potential method for magnetic field sensing based on the TIR-PCF.  相似文献   

8.
姜宏伟  王艾玲  郑鹉 《物理学报》2005,54(5):2338-2341
采用平面霍尔效应测量方法,对Ta(8nm)/NiFe(7nm)/Cu(24nm)/NiFe(44nm)/FeMn(14nm)/Ta(6nm)自旋阀多层膜进行了研究.结果表明,在样品中存在着自由层和被钉扎层之间的各向异性磁电阻的“混合”效应.与通常所采用的磁电阻测量方法相结合,平面霍尔效应的测 量可以给出自旋阀中各向异性磁电阻以及自由层和被钉扎层的磁矩随外场变化的更多信息. 关键词: 自旋阀 各向异性磁电阻 平面霍尔效应  相似文献   

9.
The magnetization reversal of electrodeposited CoNi/Cu multilayer nanowires patterned in an array using a hole template has been investigated. The reversal mode is found to depend on the CoNi layer thickness t(CoNi); with increasing t(CoNi) a transition occurs from coherent rotation to a combination of coherent and incoherent rotation at around t(CoNi)=51 nm. The reversal mode has been identified using the magnetic hysteresis loops measured at room temperature for CoNi/Cu nanowires placed at various angles between the directions of the nanowire axis and external fields using a vibrating sample magnetometer. The nanowire samples have a diameter of ∼250 nm and constant Cu layer thickness of 4.2 nm with various t(CoNi) ranging from 6.8 nm to 7.5 μm. With increasing t(CoNi), the magnetic easy axis moves from the direction perpendicular to nanowires to that parallel to the nanowires at around t(CoNi)=51 nm, indicating a change in the magnetization reversal mode. The reversal mode for the nanowires with thin disk-shaped CoNi layers (t(CoNi)=6.8, 12 and 17 nm) is of a coherent rotation type, while that for long rod-shaped CoNi layers (t(CoNi)=150 nm, 1.0, 2.5 and 7.5 μm) can be consistently explained by a combination of coherent rotation and a curling mode. The effects of dipole–dipole interactions between nanowires and between adjacent magnetic layers in each nanowire on the reversal process have been discussed.  相似文献   

10.
Fe50Co50 thin films with thickness of 30 and 4 nm have been produced by rf sputtering on glass substrates, and their surface has been observed with atomic force microscopy (AFM) and magnetic force microscopy (MFM); MFM images reveal a non-null component of the magnetization perpendicular to the film plane. Selected samples have been annealed in vacuum at temperatures of 300 and 350 °C for times between 20 and 120 min, under a static magnetic field of 100 Oe. DC hysteresis loops have been measured with an alternating gradient force magnetometer (AGFM) along the direction of the field applied during annealing and orthogonally to it. Samples with a thickness of 4 nm display lower coercive fields with respect to the 30 nm thick ones. Longer annealing times affect the development of a harder magnetic phase more oriented off the film plane. The field applied during annealing induces a moderate magnetic anisotropy only on 30 nm thick films.  相似文献   

11.
The anisotropic magnetoresistance (AMR) of a Ta (5 nm)/MgO (3 nm)/Ni81Fe19 (10 nm)/MgO (2 nm)/Ta (3 nm) film with MgO-Nano Oxide Layer (NOL) increases dramatically from 1.05% to 3.24% compared with a Ta (5 nm)/Ni81Fe19 (10 nm)/Ta (3 nm) film without the MgO-NOL layer after annealing at 380 °C for 2 h. Although the MgO destroys the NiFe (1 1 1) texture, it enhances the specular electron scattering of the conduction electrons at the NOL interface and suppresses the interface reactions and diffusion at the Ta/NiFe and NiFe/Ta interfaces. The NiFe (1 1 1) texture was formed after the annealing, resulting in a higher AMR ratio. X-ray photoelectron spectroscope results show that Mg and Mg2+ were present in the MgOx films.  相似文献   

12.
Co92Zr8(50 nm)/Ag(x) soft magnetic films have been prepared on Si (111) substrates by oblique sputtering at 45°. Nanoparticle size of Co92Zr8 soft magnetic films can be tuned by thickening Ag buffer layer from 9 nm to 96 nm. The static and dynamic magnetic properties show great dependence on Ag buffer layer thickness. The coercivity and effective damping parameter of Co92Zr8 films increase with thickening Ag buffer layer. The intrinsic and extrinsic parts of damping were extracted from the effective damping parameter. For x=96 nm film, the extrinsic damping parameter is 0.028, which is significantly larger than 0.004 for x=9 nm film. The origin of the enhancement of extrinsic damping can be explained by increased inhomogeneity of anisotropy. Therefore, it is an effective method to tailor magnetic damping parameter of thin magnetic films, which is desirable for high frequency application.  相似文献   

13.
X-ray reflectivity analyses were performed in the Si/WTi (7 nm)/NiFe (30 nm)/FeMn (13 nm)/NiFe (10 nm)/WTi (7 nm) exchange-biased system prepared by magnetron sputtering under three different argon working pressures. Layer-by-layer analyses were realized in order to obtain the interfacial roughness parameters quantitatively. For a fixed argon pressure, the root-mean-square roughness (including the atomic grading) of the upper (FeMn/NiFe) interface are greater than that for the lower one in all studied samples. Argon working pressure also has severe influence over the NiFe/FeMn interfaces, being more pronounced at the upper interfaces.  相似文献   

14.
In this work, the thickness effect of Fe52Co48 soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.  相似文献   

15.
Effective anisotropy of the ferromagnetic pinned layer of ferro(FM)-antiferromagnetic (AF)-coupled NiFe(FM)/FeMn(AF) exchange-biased system was investigated in a broad frequency range (100 MHz-5 GHz) using a complex permeability spectrum. The exchange bias and effective uniaxial anisotropy fields of the thin film have been computed theoretically using the Landau-Lifschitz-Gilbert (LLG) equation. From the measurements, uniaxial anisotropy of the pinned FM layer has been extracted to understand the nature of the exchange bias in the system. It is found that the uniaxial anisotropy field of NiFe layer when exchange biased with the AF layer increases from 5 to 15 Oe at different external magnetic fields.  相似文献   

16.
The change of the magnetic properties and magnetoimpedance effect of Co–Fe–Al–O thin films with film thicknesses 50–1200 nm has been investigated. The coercivity and the anisotropy field changed strongly with increase of film thickness, while the saturation induction almost remained unchanged. The maximum value of GMI effect obtained about 33% for a film thickness of 1200 nm.  相似文献   

17.
The magnetic Compton profiles (MCPs) of Fe thin film with 1 μm thickness have been successfully measured, using polyethylene terephtalate (PET) substrates with 4 μm thickness to reduce scattering photons from substrate.We have succeeded for the first time to observe the anisotropy of MCPs in the Co/Pd multilayer. The magnetic out-of-plane anisotropy of the current Co (0.8 nm)/Pd (1.6 nm) multilayer sample can be explained by the model of a large number of the |m|=1 states of 3d-bands.  相似文献   

18.
Yuee Li 《Optics Communications》2011,284(12):2839-2842
Semi-elliptical dielectric-loaded surface plasmon-polariton waveguide (DLSPPW) is proposed. The mode effective index, field confinement, and propagation length of the fundamental mode supported by it are calculated at the telecom wavelength λ = 1.55 μm for different dimensions of a polymer ridge (with the refractive index of 1.535) placed on a gold film surface. The waveguide structure is found to exhibit 23% increase of the propagation length while showing similar confinement as compared to conventional rectangular DLSPPW when ridge thickness t < 450 nm (ridge width w = 600 nm) and ridge width w < 320 nm (ridge thickness t = 600 nm).  相似文献   

19.
X-ray reflectivity and atomic force microscopy analyses were performed in the Si/WTi (7 nm)/NiFe (5 nm)/FeMn (13 nm)/WTi (7 nm) exchange-biased system prepared by magnetron sputtering. Layer-by-layer analyses were done in order to have interfacial roughness parameters quantitatively. X-ray reflectivity results indicate that the successive layer deposition gives rise to a cumulative roughness. In addition, the atomic force microscopic images analyses have revealed that the roughness enhancement caused by the successive layer deposition can be associated with an appearance of a longer wavelength roughness induced by the NiFe layer deposition.  相似文献   

20.
We present an experimental investigation of the magnetization reversal process in NiFe/Cu(10 nm)/Co circular and elliptical nano-elements with different thickness of the magnetic layers. The results obtained using element sensitive X-ray resonant magnetic scattering (XRMS) were compared with the previous measurements showing that the dipolar interlayer coupling favours the antiparallel alignment of the two magnetization layers at remanance. In the case of circular shape, the increased thickness of the ferromagnetic layers stabilizes the antiparallel alignment of the layers over a wider field range. A similar effect, accompanied by a delay in the onset of the antiparallel alignment, is observed in the case of elliptical nano-elements and applying the external field along the longer axis of the elements, due to the additional shape anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号