首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multilayered magnetic Co/Cu and NiFe/Cu nanowires were grown via template-assisted electrodeposition. Structures were described by means of focused ion beam/scanning electron microscopy and energy dispersive X-ray spectroscopy.  相似文献   

2.
3.
The role of defects on the magnetic behaviour of exchange coupled interfacial structures of Fe/NiO and NiO/Fe on Si substrates has been studied. For introduction of defects in the structures, swift (~ 100 MeV) heavy ion irradiation has been used, which is known to cause structural and microstructural modifications. In our earlier study [Srivastava, N; Srivastava, P.C. J. Appl. Phys. 2012, 111, 123909] on similar structures, the significant magnetic behaviour (of exchange bias (EB) and coercivity) for Fe/NiO/nSi interfacial structure was observed and discussed in the realm of interfacial structural modification in the antiferromagnetic layer of the structure. The irradiated interfacial structures have been characterized from X-ray diffraction and M–H characteristics. Structural investigation has shown the formation of various silicide and oxide phases due to the irradiation-induced interfacial intermixing. A significant enhancement in EB field and coercivity has been observed for Fe/NiO/nSi interfacial structure on the irradiation (as compared to unirradiated ones). The observed enhanced EB and coercivity on the irradiation has been understood due to the creation of domain wall pinning centres across the interface as a result of ion irradiation. Moreover, the present study confirms the role of defects in the antiferromagnetic layer to cause the significant change in EB and coercivity. The observation supports the domain state model of EB in the exchange-coupled structures.  相似文献   

4.
A theory of disordered binary alloys AxB1−x (A=Ni, Co; B=Fe; x0.06) is used to determine the changes in the electronic structure and magnetic properties of body centered cubic (BCC) iron induced by doping with nickel and cobalt impurities. This approximation is an extension of the cluster-Bethe lattice method, in which we incorporate electronic correlations, itinerant and localized nature of electrons 3d, and both long-range and short-range chemical correlations. The magnetism is described by means of a Hubbard Hamiltonian that in conjunction with Green's functions techniques is used to calculate local densities of electronic states. For it we take an atom in the real lattice and it is joined to a Bethe's lattice with like coordination number. The magnetic moments on sites occupied for A and B atoms are obtained self-consistently. Nickel and cobalt impurities in BCC iron can provide crucial information on the modification of the electronic band structure and magnetic moments from pure Fe. The results obtained are compared with those of both pure Fe and binary alloys of Co–Fe and Ni–Fe, which have been obtained by other authors using methods such as: first-principles electronic structure calculations using the layer Korringa–Kohn–Rostoker (KKR), the full-potential linearized augmented plane wave method, the KKR coherent potential approximation combined with the local-density functional method and by the tight-binding linear-muffin-tin orbitals method, obtained good agree. These results and other that recently we have published indicate to us that our methodology can be a new alternative for calculations of the electronic structure and magnetic properties of impurities and alloys of ferromagnetic transition metals.  相似文献   

5.
Co/Cu/Co/Si(111) trilayer films prepared by magnetron sputtering with different thicknesses of the Cu buffer were studied. The magnitude of the coercive force was shown to oscillate with variation of the nonmagnetic-buffer thickness. A good correlation between the saturation field and the coercive force was established. It was experimentally revealed that modification of the film structure by annealing within a broad temperature range affects the indirect exchange coupling between the Co layers. A qualitative analysis of the coercive-force behavior under variation of the strength and type of the ferromagnetic-layer coupling was performed.  相似文献   

6.
The energy of the magnetic anisotropy of Co/Cu/Co polycrystalline ultradisperse films is investigated as a function of the thickness of copper and cobalt layers. The influence of the structure parameters (the size and distribution of defects, the period and amplitude of roughnesses) on the surface and volume components of the magnetic anisotropy is analyzed. The parameters of the structure inhomogeneities and their distribution over the film surface are determined from two-dimensional Fourier spectra and electron microscope images of the films.  相似文献   

7.
Ion bombardment induced magnetic patterning (IBMP) was used to write in-plane magnetized micro and submicron patterns in exchange biased magnetic bilayers, where the magnetization directions of the adjacent patterns are antiparallel to each other in remanence. These magnetic patterns were investigated by non-contact magnetic force microscopy (MFM). It is shown that the recorded MFM images of the IBMP patterns in two exemplarily chosen standard layer systems (NiFe (4.8 nm)/NiO (68 nm) and Co (4.8 nm)/NiO (68 nm)) can be well described by a model within the point-dipole approximation for the tip magnetization. For 5 and 0.9 μm wide bar patterns the domain wall widths between adjacent magnetically patterned areas were determined to a≈1 μm. The minimum magnetically stable pattern width was estimated to be 0.7 μm in the standard system Co (4.8 nm)/NiO (68 nm).  相似文献   

8.
9.
First-principles calculations have been performed to study the electronic structure, the metallic and magnetic properties of Cu(2,5-dmpz)Cl2. The calculations are based on the density functional theory (DFT) with the generalized gradient approximation (GGA) and the full-potential-linearized-augmented plane wave (FPLAPW) method. The total energy, magnetic moment, density of states (DOS) and electronic band structure are calculated. The results reveal that the compound has a stable semiconductive antiferromagnetic (AFM) ground state and a semiconductive ferromagnetic (FM) metastable state, which is in good agreement with the experimental results. Based on the spin distribution and the DOS, it is found that the spin magnetic moment is mainly from the Cu2+, and with relative small contribution from Cl, N atoms.  相似文献   

10.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/NiO多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场.外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

11.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/Ni O多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场,外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

12.
13.
用固态反应法制备了RBa2Cu3O7δ(R123)系列样品,其中R=Tm,Dy,Gd,Eu,Nd和Y.利用正电子湮没技术以及x射线衍射等实验技术研究了稀土离子半径r对材料局域电子结构和晶体结构以及超导电性的影响.实验结果表明,正电子寿命参量τ1,τ2均随R3+半径增加而单调增加;据此所给出的局域电子密度ne,随稀土离子半径的增加表象出单调减小的趋势.实验证明局域电子密度以及晶格结构的正交性均是影响材料超导电性的因素 关键词: 稀土离子半径 高温超导电性 正电子湮没 局域电子结构  相似文献   

14.
Fe含量和粒径对Fe/Cu颗粒膜结构和磁性的影响   总被引:4,自引:1,他引:3  
郑勇林 《物理实验》2005,25(1):17-21
采用共蒸发法制备不同组分的Fe/Cu颗粒膜,将样品分两组进行退火和不退火处理. 根据测量及分析,确定了不同成分的Fe/Cu颗粒膜的相组成和晶体结构;找出了 Fe/Cu颗粒膜矫顽力与粒径的关系,利用此关系由自发形核理论可知,提高功率,快速蒸镀薄膜,可得到细密颗粒的Fe/Cu颗粒膜,从而降低矫顽力,减少磁滞损耗.  相似文献   

15.
16.
NiO/Co and NiO/Ni80Fe20 bilayers were prepared at 293 onto SiO2(1 0 1)/Si(1 1 1) and glass substrates using UHV (5×10−10 mbar) RF/DC magnetron sputtering. Results on magnetic measurements showed that the exchange biasing and coercive fields are inversely proportional to the Co and Ni80Fe20 (Py) layer thickness down to 2 nm. A maximal RT coupling energy for the NiO–Co and NiO–Py interface was estimated as 0.04 and 0.03 mJ/m2 for the samples prepared onto SiO2(1 0 1)/Si(1 1 1) substrates.  相似文献   

17.
基于密度泛函理论的第一性原理平面波超软赝势方法,分别计算了Cr、Cu掺杂Ag晶胞的电子结构和光学特性,计算结果表明,掺杂后Cr、Cu外层电子分别与Ag外层电子发生作用,价带会出现一定展宽;掺杂体系的反射谱和吸收谱在不同波段范围内会发生不同变化,体系的光谱特性发生改变. 研究结果对于光电子器件制备及薄膜界面特性研究具有指导意义.  相似文献   

18.
19.
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (approximately 100 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At 4.2 K an abrupt and hysteretic increase in resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observed at low fields. A micromagnetic model that includes a spin-transfer torque suggests that the current induces a complete reversal of the thin Co layer to alignment antiparallel to the applied field--that is, to a state of maximum magnetic energy.  相似文献   

20.
基于密度泛函理论的第一性原理平面波超软赝势方法,分别计算了Cr、Cu掺杂Ag晶胞的电子结构和光学特性,计算结果表明,掺杂后Cr、Cu外层电子分别与Ag外层电子发生作用,价带会出现一定展宽;掺杂体系的反射谱和吸收谱在不同波段范围内会发生不同变化,体系的光谱特性发生改变.研究结果对于光电子器件制备及薄膜界面特性研究具有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号