首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of FeCo–SiO2 nanogranular films were prepared using magnetron controlled sputtering method. The microstructure, tunneling giant magnetoresistance (TMR) and magnetic properties of FeCo–SiO2 films deposited at room temperature and then annealed at various temperatures were investigated using transmission electron microscopy (TEM), conventional four probes method and vibrated sample magnetometer (VSM) under room temperature, respectively. The results showed that all FeCo–SiO2 films consisted of FeCo granules with equiaxial shape uniformly dispersed in the SiO2 matrix and formed body-centered cubic (bcc) structure. With increasing the annealing temperature, FeCo granule size increased monotonically. For film with 30.5 vol% FeCo, the size distribution satisfied the log-normal function at lower annealing temperature. While with increasing annealing temperature, the size distribution deviated gradually from the log-normal function. Meanwhile, upon varying the annealing temperature, the TMR of films with lower volume fraction reached a peak value at higher annealing temperature and the TMR of films with higher volume fraction reached a peak value at lower annealing temperature. In addition, the results also indicated that the sensitivity of TMR changed non-monotonically with the increment of the annealing temperature and both the saturation magnetization and the susceptibility of FeCo (30.5 vol%)–SiO2 films increased with increasing the annealing temperature.  相似文献   

2.
An extended tunneling Hamiltonian method is proposed to study the temperature-dependent tunneling magnetoresistance (TMR) in doped magnetic tunnel junctions. It is found that for nonmagnetic dopants (Si), impurity-assisted tunneling is mainly elastic, giving rise to a weak spin polarization, thereby reduces the overall TMR, while for magnetic ions (Ni), the collective excitation of local spins in δ-doped magnetic layer contributes to the severe drop of TMR and the behavior of the variation of TMR with temperature different from that for Si-doping. The theoretical results can reproduce the main characteristic features of experiments. Received 13 January 2002 / Received in final form 30 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: yctao12@163.com  相似文献   

3.
The microstructures of Co2FeAl and Co2(Cr0.4Fe0.6)Al sputtered films and of their magnetic tunnel junctions (MTJs) have been investigated to discuss the possible reasons for an unexpectedly low tunneling magnetoresistance (TMR). The structure of the Co2FeAl film changed from B2 to L21 with increasing substrate temperature, while that of the Co2(Cr0.4Fe0.6)Al film remained B2 up to 500 °C. The thermodynamically predicted phase separation was not observed in the films. The low TMR values obtained from the MTJs using the Co2FeAl and Co2(Cr0.4Fe0.6)Al films are attributed to the low-spin polarization expected from the low degree of order in these films. The TMR values depend sensitively on the interfacial structure of the tunnel junctions when the degree of order of the film is low.  相似文献   

4.
Theoretical studies on spin-dependent transport in magnetic tunnel heterostructures consisting of two diluted magnetic semiconductors (DMS) separated by a nonmagnetic semiconductor (NMS) barrier, are carried in the limit of coherent regime by including the effect of angular dependence of the magnetizations in DMS. Based on parabolic valence band effective mass approximation and spontaneous magnetization of DMS electrodes, we obtain an analytical expression of angular dependence of transmission for DMS/NMS/DMS junctions. We also examine the dependence of spin polarization and tunneling magnetoresistance (TMR) on barrier thickness, temperature, applied voltage and the relative angle between the magnetizations of two DMS layers in GaMnAs/GaAs/GaMnAs heterostructures. We discuss the theoretical interpretation of this variation. Our results show that TMR of more than 65% are obtained at zero temperature, when one GaAs monolayer is used as a tunnel barrier. It is also shown that the TMR decreases rapidly with increasing barrier width and applied voltage; however at high voltages and low thicknesses, the TMR first increases and then decreases. Our calculations explain the main features of the recent experimental observations and the application of the predicted results may prove useful in designing nano spin-valve devices.  相似文献   

5.
Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film.  相似文献   

6.
Considering the Rashba spin-orbit interaction in the semiconductor, we study theoretically the spin-polarized transport in a two-dimensional ferromagnetic semiconductor double tunnel junctions by a quantum-mechanical approach. It is found that the transmission coefficient shows typical resonant transmission properties and the Rashba spin-orbit coupling has great different influences on the transmission coefficients of electrons with spin-up and down and tunnelling magnetoresistance (TMR). More importantly, the TMR is significantly enhanced by increasing the spin-orbit coupling, which is very useful for the designing of magnetic digital and memory sensor.  相似文献   

7.
MgO-based magnetic tunnel junctions were fabricated, with a thin pinned CoFeB layer in the unbalanced synthetic antiferromagnet part of the stack FeMn/CoFe/Ru/CoFeB. Inverted and normal tunneling magnetoresistance (TMR) values occur at low and high annealing temperatures (Ta), respectively. The TMR ratio remains inverted up to Ta=300 °C and it becomes normal around Ta=350 °C. The exchange bias of FeMn disappears at high Ta. The sign reversal of the TMR ratio is mainly attributed to the disappearance of the exchange bias due to manganese diffusion during the annealing process.  相似文献   

8.
The tunneling magnetoresistance (TMR) of a small magnetic dot array with perpendicular anisotropy, is studied by using a resistor network model. Because of the competition between dipolar interaction and perpendicular anisotropy, the TMR ratio can be up to a maximum value (~26%) as predicted by a theoretical model. At moderate dipolar interaction strength, the perpendicular TMR ratio exhibits abrupt jumps due to the switching of magnetic moments in the array when the applied field (normal to the array plane) decreases from a saturation field. This novel character does not occur if the dipolar interaction between particles is quite strong. Furthermore, the effect of the array size N on TMR is also studied and the result shows that TMR ratio fluctuates when N increases for a moderate dipolar interaction strength. When the applied field he is parallel to the array plane, the in-plane TMR curve seems insensitive to the dipolar interaction strength, but the maximum TMR ratio (~26%) can also be obtained at he=0.  相似文献   

9.
The observed tunneling magnetoresistance (TMR) effect in La0.9Ba0.1MnO3 (LBMO)/Nb-doped SrTiO3 (Nb-STO) p+-n junctions is investigated and a possible mechanism responsible for the TMR generation is proposed by taking into account the dynamic spin accumulation and paramagnetic magnetization in the Nb-STO layer. Because of carrier diffusion across the dynamic domain boundaries in the Nb-STO layer and spin disordering in the LBMO layer, the tunneling resistance through the junction is high at zero magnetic field. The spin disordering is suppressed upon applying a non-zero magnetic field, which results in the spin-polarized tunneling in this ferromagnetic/depletion layer/dynamic ferromagnetic sandwiched structure and thus the observed TMR effect. The dependence of the TMR effect on the domain size in the LBMO layer, the tunneling current and temperature as well is explained, qualitatively consistent with the experimental observation.  相似文献   

10.
Both single-barrier magnetic tunnel junctions (SBMTJs) and double-barrier magnetic tunnel junctions (DBMTJs) with an amorphous hardcore structure of Co60Fe20B20/Al–O/Co60Fe20B20 were microfabricated. A high TMR ratio of 102.2% at 4.2 K was observed in the SBMTJs after annealing at 265 °C for 1 h. High TMR ratio of 56.2%, low junction resistance-area product RS of 4.6 kΩ μm2, small coercivity HC=25 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 500 mV at room temperature (RT) had been achieved in such Co–Fe–B SBMTJs. Whereas, high TMR ratio of 60% at RT and 89% at 30 K, low junction resistance-area product RS of 7.8 kΩ μm2 at RT and 8.3 kΩ μm2 at 30 K, low coercivity HC=8.5 Oe at RT and HC=14 Oe at 30 K, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 1150 mV at RT had been achieved in the Co–Fe–B DBMTJs. Temperature dependence of the TMR ratio, resistance, and coercivity from 4.2 K to RT, and applied voltage dependence of the TMR ratio and resistance at RT for such amorphous MTJs were also investigated.  相似文献   

11.
Based on the free-electron approximation method proposed by Slonczewski, we substitute the finite magnetic zone by a semi-infinite magnet. On this basis, the relationship between the tunnel magnetoresistance (TMR) and the barrier height of magnetic tunnel junction (MTJ) is studied. We find the TMR at small bias is always positive for various barrier heights when the MTJ has a symmetric configuration and the negative TMR can be observed when MTJ is with lower barrier height in the asymmetric condition.  相似文献   

12.
A high resistance ferromagnetic oxide Fe2⋅5Mn0⋅5O4 (FMO) property as a novel spin injector was investigated with a structure of a magnetic tunneling junction (MTJ) composed of FMO/Al-O/Ni80Fe20, in order to reduce an impedance mismatch problem on molecular spintronics. A tunneling magnetoresistance (TMR) effect in the MTJs was observed. The maximum TMR ratio observed in the MTJs was approximately 0.85% at room temperature (RT), and the spin-polarization of FMO was estimated to be at least 0.94% at RT.  相似文献   

13.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

14.
The tunnel magnetoresistance (TMR) in an Aharonov–Bohm interferometer with two quantum dots inserted in its arms, which is attached to ferromagnetic leads with parallel and antiparallel magnetic configurations, is theoretically studied by means of the nonequilibrium Green’s function technique. We pay particular attention to the influence of an applied magnetic flux on the characteristics of the TMR. In the linear response regime (the external bias voltage V→0) and when the electrons are free from intradot Coulomb interaction, the magnetic flux only changes the peak or dip positions of the TMR. But in the presence of intradot Coulomb repulsion, its peak or dip positions, signs and magnitude are tuned by the magnetic flux. For the nonlinear response regime (V≠0), the TMR is symmetric with respect to zero bias voltage and the magnetic flux can influence its magnitude, signs and the peak positions regardless of the existence of intradot Coulomb interaction. The behavior of the TMR is interpreted in terms of the quantum interference (Fano) effect.  相似文献   

15.
The tunneling magnetoresistance (TMR) in GaMnAs/GaAs/GaMnAs magnetic tunnel junctions is studied under an extended coherent tunneling approach where both the contributions of the light holes and the heavy holes and their mutual competitions are investigated. It is shown that the TMR ratio can increase with decreasing the barrier strength, which is different from the results in the conventional magnetic tunnel junctions but a good news for the applications. It is also shown that the presence of the pinholes in the thin barrier layer gives a possible explanation of the peak in the barrier thickness dependence of the TMR ratio.  相似文献   

16.
X-ray magnetic circular dichroism (X-MCD) was used as a large, element-specific and quantitative magnetic contrast mechanism in the soft X-ray microscopes at BESSY I (Berlin) and the ALS (Berkeley). The present state and potential of magnetic transmission X-ray microscopy (MTXM) is outlined. The possibility to record images in varying magnetic fields and the high spatial resolution down to 25 nm were used to image out-of-plane magnetized (4 ?Fe / 4 ?Gd)×75 systems. Magnetic domains could be studied in arrays of circular and square dots with lateral dimensions down to 180 nm. Hysteresis loops of individual dots were deduced using the direct proportionality of the X-MCD contrast to the sample magnetization. Images of a 3 nmCr / 50 nmFe / 6 nmCr film demonstrate for the first time that MTXM is also able to observe in-plane magnetized domains. In the future the possible applications of MTXM will be extended with regard to the strength of the external field, the available energy range and the sample conditions by building a dedicated transmission X-ray microscope for magnetic imaging at BESSY II. Received: 22 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

17.
刘一曼  邵怀华  周光辉  朴红光  潘礼庆  刘敏 《中国物理 B》2017,26(12):127303-127303
The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene.In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance(TMR) effect.The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.  相似文献   

18.
The structure and magnetic properties of CoPt–Al2O3 nanocomposite films synthesized by the annealing of Al/(Co3O4 + Pt) bilayers on a MgO(001) substrate at 650°C in vacuum are investigated. The synthesized composite films contain ferromagnetic CoPt grains with an average size of 25–45 nm enclosed in a nonconducting Al2O3 matrix. The saturation magnetization (Ms ~ 330 G) and coercivity (Hc ≈ 6 kOe) of the films are measured in the film plane and perpendicular to it. The obtained films are characterized by a spatial rotational magnetic anisotropy, which makes it possible to arbitrarily set the easy magnetization axis in the film plane or perpendicular to it using a magnetic field stronger than the coercivity (H > Hc).  相似文献   

19.
We have proved on the basis of the experimental optical reflection and transmission spectra of the nanocomposite film of poly(methyl methacrylate) with silver nanoparticles that (PMMA + Ag) nanocomposite films have quasi-zero refractive indices in the optical wavelength range. We show that to achieve quasi-zero values of the complex index of refraction of composite materials is necessary to achieve high-negative effective refractive index in the system of spherical silver nanoparticles.  相似文献   

20.
Ozone oxidization process of metal Mg film for the barrier formation in magnetic tunnel junctions (MTJs) is investigated. Ozone exposure method is expected to oxidize ultra-thin metal films more mildly than with the plasma oxidization method, since the energy level of atomic oxygen is ∼2 eV lower in the ozone method than in the plasma method. The main results were as follows: (1) In the case of ozone oxidation, the diffusion coefficient of oxygen in the insulator is much smaller than that in plasma oxidation. (2) Mg–O film thickness, which is formed by reaction immediately on the metal Mg surface, is thicker as compared with the Al case. (3) In the ozone oxidation method of metal films with the thickness of more than the film thickness formed by reaction, the oxidation is spontaneously stopped at the interface to the bottom Co–Fe. As a result, we succeeded in inducing a TMR ratio of 25% at room temperature in MTJs with Mg(1.3 nm)–O barrier with wider exposure range than in the plasma case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号