首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetoelastic (ME) waves and thickness-shear modes in the ferromagnetic plate are studied. Coupled vibrations of magnetization and shear elastic deformations excited simultaneously by a variable magnetic field propagate in two mutually perpendicular directions: parallel and normal to a surface. For parameters characteristic of isotropic ferromagnet with the sample magnetization and Zeeman field parallel to the surface, resonant frequencies of shear modes are computed and their dispersion law is examined. It is shown that the dependence of dimensional resonances frequencies on wave number kz of ME wave propagating along saturating field direction occurs. The possibility of excitation of ME waves with different kz explains multimode character of thickness ME resonances.  相似文献   

2.
The phenomenon of magnetoacoustic emission (MAE) has been ascribed usually to one of two origins: either (1) motion of non-180° domain walls or (2) creation or annihilation of domains. In this paper, we present strong evidence for the argument that the only origin for MAE is motion of non-180° domain walls. The proof is evident as a result of measurements of zero MAE for a wide range of stress in the isotropic zero magnetostrictive polycrystalline alloy of iron with 6.5% silicon. We also explain why it was that the alternative origin was proposed and how the data in that same experiment can be reinterpreted to be consistent with the non-180° wall motion origin.  相似文献   

3.
Recent experimental data for magnetostriction in the rare-earth (RE) ferroborates RFe3(BO3)4 with R=Pr and Tb are discussed from a theoretical point of view. Multipole moments of RE ions are calculated in the framework of a crystal-field model for the RE ion and the molecular-field approximation. Quadrupole approximation is shown to be sufficient for interpretation of data for longitudinal magnetostriction at the magnetic field along the trigonal axis. Parameters of PrFe3(BO3)4 are deduced when accounting for the experimental magnetization curves that manifest a spin-flop transition.  相似文献   

4.
The magnetostriction of the off-stoichiometric R2Fe17-type intermetallic compounds based on R2Fe14−xCoxSi2 (R=Y, Er, Tm and x=0, 4) was measured, using the strain gauge method in the temperature range 77-460 K under applied magnetic fields up to 1.5 T. All compounds show sign change and reduction in magnetostriction values compared to the R2Fe17 compounds by Si substitution. For Y2Fe14Si2 and Er2Fe14Si2, saturation behaviour is observed near magnetic ordering temperature (TC), whereas for Tm2Fe14Si2, saturation starts from T>143 K. Also, Co substitution has different effects on the magnetostriction of R2Fe14Si2 compounds. In Er2Fe10Co4Si2 and Tm2Fe10Co4Si2, saturation occurs below the spin reorientation temperature (TSR). In addition, in Er2Fe14Si2, a sign change occurs in the anisotropic magnetostriction (Δλ) as well as the volume magnetostriction (ΔV/V) at their TSR values. The volume magnetostrictions of the Tm-containing compounds show an anomaly around their TSR. In R2Fe14Si2 compounds, parastrictive behaviour is also observed in ΔV/V near their TC values. In addition, the magnetostriction of the sublattices is investigated. Results show that in R2Fe14Si2 compounds, the rare-earth sublattice contribution to magnetostriction is negative and comparable to the iron sublattice, whereas, in R2Fe10Co4Si2 compounds, the rare-earth sublattice contribution is positive and larger than Fe sublattice. These results are discussed based on the effect of Si and Co substitutions on the anisotropy field of these compounds. Influence of the spin reorientation transition on the magnetostriction of these compounds is discussed in terms of the anisotropic sublattice interactions.  相似文献   

5.
Effects of the magnetoelectric coupling between the frustrated antiferromagnetic and ferroelectric ordering in hexagonal ferroelectromagnet are investigated by the soft-mode theory and molecular-field approximation. Applying the Heisenberg model for frustrated triangular antiferromagnets with exchange anisotropy and Diffour model for ferroelectric interaction, we discuss thermodynamic properties of the hexagonal ferroelectromagnetic system, including mean magnetization 〈si〉, polarization p, magnetization susceptibility χm, and polarization susceptibility χp, in a possible coupling form related to a combination of electric polarization and spin correlation. It is found that polarization induced by magnetic coupling leads to an anomaly in χp and a cusp in χm at low-temperature, which is consistent qualitatively with experimental results in hexagonal ferroelectromagnet YMnO3.  相似文献   

6.
Magnetic states and phase transitions of the layered triangular antiferromagnets in an applied field are studied. It is shown that in compounds like VBr2 and VCl2 quantum effects change the ground-state structure and cause successive phase transitions as the magnetic field increases. Coplanar structures of different spin configuration are realized far from the saturation field and a noncoplanar structure of umbrella-type configuration is realized near this field. The ground-state phase diagram is constructed, and a finite region of fields where the collinear phase is also possible is indicated.  相似文献   

7.
Frequency dependence of amplitude of transverse acoustic wave in antiferromagnetic monocrystal iron borate was investigated. It was shown that experimental amplitude–frequency characteristics may be interpreted on the basis of developed theory of magnetic birefringence of sound in FeBO3 taking into account defect structure of the real crystal, experimental boundary conditions and pass band of piezotransducers.  相似文献   

8.
Cobalt (Co) and tantalum (Ta) co-substituted BiFeO3 polycrystalline ceramics were prepared by a solid-state reaction and their magnetic and dielectric properties were investigated. Magnetic hysteresis loops were clearly observed in co-substituted specimens and magnetization was greatly improved. The co-substitution decreased the electrical conductivity by six orders of magnitude along with the reduction of grain size. The magnetoelectric coupling was estimated in co-substituted BiFeO3 by determining the changes of the dielectric constant with an external magnetic field.  相似文献   

9.
The magnetoelectric properties of a rhombohedrally distorted perovskite BiFe0.7Mn0.3O3 are reported. An anomaly in the dielectric constant, related to enhanced thermal fluctuations around the antiferromagnetic transition, was induced near room temperature by the substitution of Mn for Fe in BiFeO3. This substitution also brings about non-trivial magnetocapacitance effects at room temperature.  相似文献   

10.
The dependence of the transformation coefficient of the four-pole network with the toroid core made of the La0.6Pb0.4MnO3 manganite on dc biasing magnetic field and frequency was experimentally investigated. The factors which influence the value of the transmission coefficient are analyzed. In the megahertz frequency range the frequency dependence of the transformation coefficient has a resonant form with the position of the maximum and amplitude increasing with the dc biasing. The dc magnetic field dependence of the phase shift between the voltages in the primary and secondary windings was investigated. The results are interpreted taking into account the imaginary component of magnetic permeability of the core material.  相似文献   

11.
The penetration depth of the skin-effect has been calculated for a specimen in the form of a piece of amorphous glass-coated magnetic micro-wire of the “non-magnetostrictive” composition Co67Fe3.85Ni1.45Mo1.7Si14.5B11.5 displaying large GMI effect. For these calculations a simple model was applied in which a rough assumption was made that the changes of the real component of the impedance are due only to changes in the effective cross-section of the wire for the AC-current. The evolution of the penetration depth with the applied DC-axial field and frequencies of the AC-current, flowing along the wire, is presented. The so-called Cole–Cole diagrams were also plotted for the same specimen. These diagrams, representing the measured impedance plotted in the complex plane, were obtained for axial DC-magnetic field of selected intensities and circular AC-field generated by an AC-current of various frequencies (1–30 MHz) flowing along the wire specimen. Analysis of the diagrams enabled one to characterize magnetization processes within the wire specimen and also to estimate the median relaxation time of these processes as well as a relative measure of the distribution of relaxation times.  相似文献   

12.
The ordered phase of the most part of ABX3 antiferromagnets appears as a stacking of 120°-three sublattice spin layers with alternate spin direction along thec-axis. This configuration is easy to be explained because it is the minimum energy configuration of the Heisenberg hexagonal model with nearest neighbour antiferromagnetic interaction. However we show that moderate competitive interactions between in plane next nearest and third nearest neighbours stabilize incommensurate spin configurations. This gives some insight into the unexplained spin configuration observed in RbMnBr3 by elastic neutron scattering experiment.  相似文献   

13.
A quantitative model describing large magnetostrain effect observed in several ferromagnetic shape memory alloys such as Ni2MnGa is briefly reported. The paper contains an exact thermodynamic consideration of the mechanical and magnetic properties of similar type materials. As a result, the basic mechanical state equation including magnetic field effect is directly derived from a general Maxwell relation. It is shown that the magnetic field induced deformation effect is directly connected with the strain dependence of magnetisation. A simple model of magnetisation and its dependence on the strain is considered and applied to explain the results of experimental study of large magnetostrain effects in Ni2MnGa.  相似文献   

14.
Experimental results on the thermal expansion and magnetostriction of YFe10V2 composites are reported and the influence of H and N interstitial atoms is studied. The anisotropic magnetostriction is about 30% larger in the composite than in the starting alloy. Also, the anisotropic magnetostriction remains positive after insertion of H (N) ion while the sign of volume magnetostriction changes by hydrogenation. The anisotropic magnetoelastic interactions are enhanced by insertion of H and especially N interstitial atoms. The results are discussed considering the effect of H and N, and of temperature on magnetic anisotropy and microstructure.  相似文献   

15.
Magnetoelastic properties of the Pr6Fe11Ga3 alloy are studied by magnetostriction and thermal expansion measurements. The effects of short- and long-range magnetic ordering processes about Curie temperature clearly appear in the temperature dependence of the spontaneous magnetostriction as two increasing steps with decreasing temperatures. Thermal variations of the total magnetocrystalline anisotropy introduce pronounce changes in the isofield curves of the forced magnetostriction as a negative minimum below 200 K, a compensation phenomena about 250 K, and a positive maximum between 250 K and Tc=320 K. The observed behavior of magnetostriction is discussed in terms of the competitive anisotropies of Pr and Fe sublattices and coupling magnetostrictive constants.  相似文献   

16.
17.
High-energy high-flux synchrotron X-rays have been used to study the spontaneous magnetostriction of R2Fe17 (R=Y, Nd, Gd, Tb, Er) and their carbides in the temperature range 10–1100 K. Addition of interstitial carbon greatly increases both the Curie temperatures (TC) and the spontaneous magnetostrain of the compounds, while reduces the anisotropy of the magnetostrain by expanding the distances between rare-earth and neighboring Fe sites. The increase of TC with carbon is due to the increased spatial separation of the Fe hexagon layers. On the basal plane, the Fe hexagons are squeezed and the contribution of Fe sublattice to spontaneous magnetostriction is attenuated, while that of rare-earth sublattice is enhanced. The average bond magnetostrain around Fe sites are in linear relation with their hyperfine field intensities.  相似文献   

18.
(Fe,Co)–Zr,Hf)–Cu–B (HITPERM-type) alloys with variable Hf, Zr and Co content were isothermally crystallised at 500–650 °C for 1 h, and the optimum nanocrystallisation temperature was selected on the basis of the minimum coercive field at room temperature. The quasistatic hysteresis loops were measured at temperature from 20 to 650 °C. Subsequently, the optimally annealed alloys were subjected to long-term annealing at 500, 550 and 600 °C. Working temperature of 600°C is too high for the investigated alloys to maintain stable magnetic properties. Temperature of 550 or 500 °C permits the material to be magnetically stable for a long period. The magnetic hysteresis loops recorded for the nanocrystalline alloys, where Fe:Co ratio is close to 1 and refractory metals content is 7 at.%, prove that coercive field increases slightly with temperature, but remains in the range of 20–40 A/m (depending on the alloy composition) from 20 to 550 °C. This proves that the investigated alloys, after optimisation of chemical composition, may be suitable for high temperature use.  相似文献   

19.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号