首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A systematic study of exchange bias in MnPd/Co and MnPd/Co1−xFex bilayers has been carried out. Very large unidirectional anisotropy constant of 2.2 erg/cm2 and the appearance of double-shifted loops, ascribed to the coexistence of positive and negative exchange bias, have been observed. The dependence of exchange bias, unidirectional anisotropy constant and coercivity on thickness, temperature, annealing regime and Fe content has been investigated and discussed.  相似文献   

2.
We report the observation of excellent hard magnetic properties on purely single phase ErCo7−xCux compounds with x=0.3, 0.5, 0.8 and 1. Cu substitution leads to a decrease in the saturation magnetization, but enhances the uniaxial anisotropy in this system. The large anisotropy field (∼100 kOe) is attributed to the Er and the Co sublattices. Domain wall pinning effect seems to play a crucial role in determining the temperature and field dependences of magnetization in these compounds. The hard magnetic properties obtained at room temperature (RT) are comparable to the best results obtained in other RCo7 based materials.  相似文献   

3.
4.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

5.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

6.
Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an “in-plane easy-axis” phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed.  相似文献   

7.
X-ray powder diffraction and magnetization measurements were done on the magnetic shape memory alloys Ni2Mn1+xIn1−x. On the basis of the results, the magnetic phase diagram was determined for Ni2Mn1+xIn1−x alloys. Magnetization measurements make clear that the excess Mn atoms, which substitute for In sites, are coupled ferromagnetically to the ferromagnetic manganese sublattices. A magnetic phase diagram of Ni2Mn1+xIn1−x alloys is discussed qualitatively on the basis of the interatomic dependence of the exchange interactions.  相似文献   

8.
Electron microscopy was employed to investigate the structure of magnetic field crystallized (Co1−xFex)89Zr7B4 alloys with only dilute Fe-contents (x=0, 0.025, 0.05, and 0.10). The x=0.025 and 0.05 alloys exhibit very large field induced anisotropies and multiple nanocrystalline phases (BCC, FCC, and HCP) surrounded by an intergranular amorphous phase. Correlation between the volume fraction crystallized and the measured value of HK suggests that the large KU values are associated with the crystalline phases that form. Multiple crystalline phases are present for the highest KU alloys and so the presence of FCC and/or HCP-type nanocrystals may be responsible for these observations. High-resolution transmission electron microscopy (HRTEM) illustrates a number of microstructural features including (1) high densities of stacking faults in many of the FCC and, in particular, the HCP-type nanocrystals, (2) infrequent BCC/FCC orientation relationships, and (3) nanocrystals with disordered or long period stacking sequences of close-packed planes. High densities of planar faults are suggested as a potential source of KU for the FCC and HCP-type nanocrystals, but the origin of the large values of KU found in dilute Fe-containing, Co-rich “nanocomposite” alloys is an area where further work is needed.  相似文献   

9.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

10.
Using first-principles total energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and thermodynamic properties of potassium halides (KClxBr1−x, KClxI1−x and KBrxI1−x), with x concentrations varying from 0% up to 100%. The effect of composition on lattice constants, bulk modulus, band gap and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the three alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram.  相似文献   

11.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

12.
Magnetization curves with various magnetic field orientations and nanowire diameters were measured at room temperature. The measured coercivity as a function of angle (θ) between the field and wire axis reveals that the coercivity decreases with increasing value of θ for various nanowires. Theoretically, based on Monte Carlo simulation we investigated the magnetization reversal modes of the Co1−xCux nanowires and obtained also the θ dependence of the coercivity. Comparing the simulated with the experimental results, we find that the magnetocrystalline anisotropy plays an important role on the magnetic properties of Co1−xCux nanowires, and the magnetization reversal process in the Co1−xCux nanowires could not be understood by the classical uniform rotation mode in the chain-of-sphere model.  相似文献   

13.
We have measured positive exchange bias in a Ni80Fe20/NixFe1−xO thin-film nanocrystallite system. A series of solid solution NixFe1−xO 40 nm thick films capped with 25 nm thick Ni80Fe20 were deposited using a range of %O2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni80Fe20/NixFe1−xO (30%O2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex∼60 Oe at 150 K.  相似文献   

14.
HfxZn1−xO thin films (x=3, 7, 10 and 15 mol%) were deposited on Si (1 0 0) using pulsed laser deposition. The influence of the Hf concentration on the microstructure and optical properties of the films was studied. It is found that Hf ions can be effectively doped into ZnO and all films crystallize in the hexagonal wurtzite structure with a preferred c-axis orientation. The lattice constants of HfxZn1−xO films increase with the Hf contents. Two ultraviolet peaks centered at about 364 and 380 nm coexist in the fluorescent spectra. With increasing the Hf contents, the intensity of fluorescent peaks enhances remarkably. At the same time the energy gaps gradually increase, while the positions of ultraviolet peaks remain unchanged. The mechanism of luminescent emission for HfxZn1−xO films was discussed.  相似文献   

15.
16.
Polycrystalline samples of Laves-phase alloys Dy(Co1−xFex)2(x=0x=0, 0.02,0.04,0.06,0.08) have been prepared by arc-melting method. No first order phase transition was observed for samples with x≠0x0. With the increase of Fe content, the Curie temperature increases greatly, while the calculated magnetic entropy change, ΔSM, shows an obvious decrease with a broader peak. The origin of the magnetocaloric effect in Dy(Co1−xFex)2 alloys has been discussed.  相似文献   

17.
We performed the magnetization measurement on Ho1−xDyxNi2B2C single crystals (x=0.1, 0.2, 0.3, 0.4, and 0.6) with magnetic field applied perpendicular and parallel to the c-axis. But only for the magnetic field perpendicular to the c-axis, the increase of Dy3+ concentration affects the magnetically ordered states of HoNi2B2C compound and makes the phase diagram more complicated. The antiferromagnetic ordering state attributed to Dy3+ sublattice starts to appear from a case of x=0.2 and finally the magnetic phase diagram becomes analogous to that of DyNi2B2C as x is increased which is consistent with the neutron scattering result.  相似文献   

18.
Cd1−xMnxTe thin films were fabricated by thermal interdiffusion of multilayers of sputtered compound semiconductors as well as thermally evaporated elements. Electron microscopy revealed their nanostructures. The alloys have been investigated for evaluation of optical and electronic parameters. Spectrophotometry helped to find out the bandgap and composition; photoluminescence was used for observing relative transition probabilities at room temperature. Photoresponse showed the light dependence of the resistance of the alloy films. Hall measurements and four-probe tests indicated the influence of manganese on the room-temperature electronic properties of the alloy.  相似文献   

19.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

20.
The magnetic nanoparticles of Mn1−xCuxFe2O4 (x=0, 0.2) were prepared by using a sol-gel method. It is proved that both the MnFe2O4 and Mn0.8Cu0.2Fe2O4 nanoparticle samples have superparamagnetic feature. Although the particle sizes are the same, substitution of a small fraction Cu for Mn results in the increase of magnetocrystallite anisotropy energy, thus enhances the blocking temperature from 130 K for MnFe2O4 to 260 K for Mn0.8Cu0.2Fe2O4. Mössbauer spectroscopy confirms that the anisotropy constant K of the Mn0.8Cu0.2Fe2O4 material is distinctly higher than that of the MnFe2O4 compound. Increase of the blocking temperature suggests that the approach we employed is effective to tackle the ‘superparamagnetic limit’ problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号