共查询到20条相似文献,搜索用时 15 毫秒
1.
K.B. Li J.J. Qiu P. Luo L.H. An Z.B. Guo Y.K. Zheng G.C. Han Y.H. Wu S.J. Wang 《Journal of magnetism and magnetic materials》2006
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process. 相似文献
2.
The variation of the applied field results in a subsequent change of magnetization with time. There is a relationship between the coercivity (Hc), as the equilibrium characteristic of the system, and its magnetic stability (1/S), as a parameter characterizing the time dependence. 1/S as a function of Hc has been measured and studied for different Fe1−xCox samples. We synthesized several samples with different values of x by applying various magnetic fields during the grains’ growth, and observed a linear relationship between 1/S and Hc. 相似文献
3.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites. 相似文献
4.
Yanhong Ding Tian QiuXuan Liu Yi LongYongqin Chang Rongchang Ye 《Journal of magnetism and magnetic materials》2006
Under various amplitude of AC magnetic fields domain wall motion is the main mechanism in the magnetization process. This includes domain wall bulging and domain wall displacing. In this paper complex permeability-frequency spectra of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 (x=0,0.5) nanocrystalline alloys were measured as a function of the AC magnetic field, ranging from 0.001 to 0.04 Oe. Obvious changes have been found in complex permeability spectra for alloy x=0 with the change of the amplitude of AC magnetic field, but variation of AC magnetic field has little effect on complex permeability spectra for alloy x=0.5. This is attributed to the increased pinning field after substitution of Fe with Co in Fe73.5Cu1Nb3Si13.5B9 nanaocrystalline alloy. 相似文献
5.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction. 相似文献
6.
S.K. Srivastava Manoranjan Kar S. Ravi P.K. Mishra P.D. Babu 《Journal of magnetism and magnetic materials》2008
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The M–H loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping. 相似文献
7.
Amorphous soft magnetic ribbons Fe73.5−xCrxSi13.5B9Nb3Cu1 (x=1–5) have been fabricated by rapid quenching on a single copper wheel. The differential scanning calorimetry (DSC) patterns showed that the crystallization temperature of α-Fe(Si) phase is ranging from 542 to 569 °C, a little higher than that of pure Finemet (x=0). With the same annealing regime, the crystallization volume fraction as well as the particle size of α-Fe(Si) crystallites decreased with increasing Cr amount substituted for Fe in studied samples. Especially, the interesting fact is that the laminar structure of heat-treated ribbons on the surface contacted to copper wheel in the fabricating process has been firstly discovered and explained to be related to the existence of Cr in studied samples. The hysteresis loop measurement indicated that there is the pinning of displacement of domain walls. The giant magnetocaloric effect (GMCE) has been found in amorphous state of the samples. After annealing, the soft magnetic properties of investigated nanocomposite materials are desirably improved. 相似文献
8.
Giap.V. Duong R. Sato Turtelli N. Hanh D.V. Linh M. Reissner H. Michor J. Fidler G. Wiesinger R. Grössinger 《Journal of magnetism and magnetic materials》2006
Nanocrystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x=0, 0.2, 0.4), were for the first time prepared by forced hydrolysis method. Magnetic and structural properties in these specimens were investigated. The average crystallite size is about 3.0 nm. When the zinc substitution increases from x=0 to x=0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g and the coercive field decreases from 1.22 to 0.71 T. All samples are superparamagnetic at room temperature and ferrimagnetic at temperatures below the blocking temperature. The high value of the saturation magnetization and the very thin thickness of the disorder surface layer of all samples suggests that this forced hydrolysis method is suitable not only for preparing two metal element systems but also for three or more ones. 相似文献
9.
Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an “in-plane easy-axis” phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed. 相似文献
10.
A.G. Kuchin A.S. ErmolenkoYu.A. Kulikov V.I. KhrabrovE.V. Rosenfeld G.M. MakarovaT.P. Lapina Ye.V. Belozerov 《Journal of magnetism and magnetic materials》2006
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories. 相似文献
11.
We report the observation of excellent hard magnetic properties on purely single phase ErCo7−xCux compounds with x=0.3, 0.5, 0.8 and 1. Cu substitution leads to a decrease in the saturation magnetization, but enhances the uniaxial anisotropy in this system. The large anisotropy field (∼100 kOe) is attributed to the Er and the Co sublattices. Domain wall pinning effect seems to play a crucial role in determining the temperature and field dependences of magnetization in these compounds. The hard magnetic properties obtained at room temperature (RT) are comparable to the best results obtained in other RCo7 based materials. 相似文献
12.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed. 相似文献
13.
Zan Yao 《Journal of magnetism and magnetic materials》2009,321(3):203-206
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples. 相似文献
14.
J. ?wik T. Palewski J. Lyubina J. Klamut 《Journal of magnetism and magnetic materials》2009,321(18):2821-2826
Magnetic and specific heat measurements have been carried out on polycrystalline series of single-phase Dy1−xLaxNi2 (0?x?1) solid solutions. The compounds have a Laves-phase superstructure (space group F4¯3m) with the lattice parameter gradually increasing with decreasing Dy content. The samples with x?0.8 are ferromagnetic with the Curie temperature below 22 K. At high temperatures, all solid solutions are Curie-Weiss paramagnets. The Debye temperature, phonon and conduction electron contributions as well as a magnetic contribution to the heat capacity have been determined from specific heat measurements. The magnetocaloric effect was estimated from specific heat measurements performed in a magnetic field of 0.42 and 4.2 T. 相似文献
15.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content. 相似文献
16.
A series of Ag1−x(Ni0.8Co0.2)x granular film samples were prepared using an ion-beam cosputtering technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were performed to investigate the microstructure of these samples. The results measured using a vibrating sample magnetometer (VSM) show a gradual change from superparamagnetism to ferromagnetism as x increases in these samples. Magnetoresistance was measured using a conventional four terminal method at room temperature. As x increases, a transition from giant magnetoresistance (GMR) to anisotropic magnetoresistance (AMR) has been observed. The stripe-type domains have been observed using magnetic force microscopy (MFM) in the high x samples, and the domains gradually disappear as x decreases. It suggests that the transition from GMR to AMR may result from intergranular interaction (not only dipolar) in the samples as x increases. 相似文献
17.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves. 相似文献
18.
Mg0.7Zn0.3SmxFe2−xO4 ferrites were prepared by the solid-state reaction method and were characterized by X-ray diffraction and magnetization measurements. A single spinel phase was obtained in the range 0.00?x?0.03. The lattice parameter was found to increase at x=0.01 and then decreases up to x=0.03, which may indicate a distortion in the spinel lattice. The saturation magnetization was found to decrease with the increase in x up to 0.04, due to the replacement of the Fe3+ ions by the Sm3+ ions. 相似文献
19.
Puneet Sharma R.A. Rocha S.N. Medeiros B. Hallouche A. Paesano Jr. 《Journal of magnetism and magnetic materials》2007
Barium hexaferrite powders with manganese substitution were prepared by mechanosynthesis. The structural and magnetic properties were characterized by X-ray diffractometer and vibration sample magnetometer, respectively. XRD patterns were refined by Rietveld method. Preferential site occupation of manganese ion was investigated by room temperature (RT) Mössbauer measurements. XRD results showed a single-phase barium hexaferrite with some residual hematite. Crystallite size was observed to decrease with substitution amount. Lower saturation magnetization and increased coercivity is observed in substituted samples. RT Mössbauer measurements showed that manganese ions preferentially occupy 12k, 4f2, and 2a sites. 相似文献
20.
Sang Soo Yu Kyung Hee Han Young Eon Ihm Dojin Kim Hyojin Kim Chang Soo Kim Hyun Ryu Sangjun Oh 《Journal of magnetism and magnetic materials》2006
Amorphous Ge1−xCrx thin films are deposited on (1 0 0)Si by using a thermal evaporator. Amorphous phase is obtained when Cr concentration is lower than 30.7 at%. The electrical resistivities are 1.89×10−3–0.96×102 Ω cm at 300 K, and decrease with Cr concentration. The Ge1−xCrx thin films are p-type. The hole concentrations are 5×1016–7×1021 cm−3 at 300 K, and increase with Cr concentration. Magnetizations are 7.60–1.57 emu/cm3 at 5 K in the applied field of 2 T. The magnetizations decrease with Cr concentration and temperature. Magnetization characteristics show that the Ge1−xCrx thin films are paramagnetic. 相似文献