首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Samples of Ni1−yZnyCu0.3Fe1.7O4; 0.0?y?0.6 were prepared by the solid state reaction method. X-ray investigations were carried out in order to assure the formation of the samples in single spinel phase. The analysis of X-ray data shows that the unit cell parameter increases with increasing Zn concentration and ascribed to the variation of the predicted cation distribution. Seebeck coefficient measurements were performed to know the type of charge carriers participating in the conduction mechanism. The magnetic susceptibility for the prepared samples was measured using Faradays method at different temperatures as a function of the magnetic field intensity. The magnetic parameters were calculated from the magnetic susceptibility data, in the temperature range (300–800 K) at three different magnetic field intensities of (1280, 1733 and 2160 Oe). The effective magnetic moment (μeff) showed that, the critical Zn content was y=0.2y=0.2.  相似文献   

2.
We report here on the fluorination of the perovskite-related phases La1−xSrxFe1−yCoyO3−δ. The introduction of fluorine in place of oxygen is achieved through a low-temperature (400 °C) reaction with poly(vinylidene fluoride). X-ray powder diffraction data show that in all cases the fluorination leads to an expansion in the unit cell, which is consistent with partial replacement of oxygen by fluorine and consequent reduction in the oxidation state of iron and/or cobalt. This reduction in oxidation state is confirmed by X-ray absorption- and Mössbauer-spectroscopy. The Mössbauer spectra show complex magnetically split hyperfine patterns for the fluorinated samples, reflecting the interactions between Fe3+ ions, which are not possible in oxides containing Fe4+.  相似文献   

3.
Electrical conductance and X-ray diffraction (XRD) measurements of lanthanum-deficiency La1−xxMnO3 (x=0.05, 0.10 and 0.20) polycrystalline samples were performed to examine the effect of the internal pressure at B-site on the conduction mechanism. The structural study reveals that all samples crystallize in the rhombohedral system. The electronic conduction appears to be thermally activated at high temperature, which indicates the presence of semiconductor behaviour. The increase of the x content converts 3x Mn3+ to 3x Mn4+ ions with smaller ionic radius, which reduces the internal pressure and leads to the increase of the one-electron bandwidth W. This increase causes the appearance of metallic behaviour at low temperature for x=0.10 and 0.20 content.  相似文献   

4.
Perovskites BaTi1−xFexO3 has been synthesized with the concentration x ranging from 0.01 to 0.02. Their transformation point of ferroelectric to paraelectric and the corresponding latent heat of the phase transformation were observed to decrease with increasing the doping level of Fe3+. Bonded layered composites BaTi1−xFexO3–Tb1−yDyyFe2−z have been fabricated and their magnetoelectric effect has been investigated. The sample containing a layer of perovskite BaTi0.985Fe0.015O3 was found to show the maximum transverse ME voltage coefficient, which is about 1422 mV Oe−1 cm−1 under a magnetic field of 1580 Oe, in these bilayers. Analysis shows that the Fe-doped BaTiO3 with doping level at about 1.5% should have largest piezoelectric coefficient in these ceramics BaTi1−xFexO3.  相似文献   

5.
Polycrystalline samples with nominal composition of La0.7Ca0.3Mn1−xVxO3 (0?x?0.2) sintered in air were investigated by ac susceptibility, dc magnetization, magnetoresistance (MR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential thermal analysis (DTA) measurements. It is found that V could not substitute for Mn to form La0.7Ca0.3Mn1−xVxO3 phase when the samples are sintered in air. The obtained samples contain several phases such as (La, Ca)Mn1−δO3, LaCa3V3O12, Mn3O4 phases, etc. and constitute multi-phase composites. The Curie temperature TC and spontaneous magnetization of the composites decrease, and the resistance of the composites increases as the V content increases. The addition of V may effectively improve the low-field MR response at low temperatures due to the variation in the microstructure of the composites.  相似文献   

6.
A series of the double-doping samples La(2+4x)/3Sr(1−4x)/3Mn1−xCuxO3(0?x?0.2)(0?x?0.2) with the Mn3+/Mn4+ ratio fixed at 2:1 have been prepared. The structural, magnetic, transport properties and magnetoresistance of the series samples have been investigated. It is found that no apparent crystal structure change is introduced by Cu doping up to x=0.20x=0.20. But the Curie temperature TCTC and magnetization M   are strongly affected by Cu substitution. A remarkable magnetotransport behavior, characterized by double bumps, is observed, and an obvious low-temperature upturn is found in the range of 0.07?x?0.120.07?x?0.12. As a result, the temperature range of colossal magnetoresistance (CMR) is greatly broadened. Moreover, it is found that the room temperature magnetoresistance (MR) of double-doping samples is obviously larger that the undoped La2/3Sr1/3Mn1−xCuxO3 at 300 K, which can give a guide for the adequate selection of the room temperature CMR materials.  相似文献   

7.
The magnetic, transport, and optical properties of electron-doped Ca1−xLaxMnO3−δ single crystals with x  ?0.12 were studied. The magnetic measurements show that in single crystals with x=0x=0 and 0.05 the G-type AFM phase with weak FM component is realized and in crystals with x=0.10x=0.10 and 0.12 the G- and C-type AFM phases coexist. The C-type magnetic structure arises at less concentration of La than in polycrystalline samples as a result of oxygen vacancies being additional source of electrons. Under magnetic transitions in the G- and C-type phases, resistivity and magnetoresistance of the doped single crystals have anomalies. Optical absorption in IR range indicates formation of a charge gap in crystals with x=0.10x=0.10 and 0.12 at appearance of the C-AFM and monoclinic phase with orbital/charge ordering. By comparing optical and transport properties, heterogeneous electronic state and its relation with heterogeneous magnetic state are shown.  相似文献   

8.
The effects of K doping in the A-site on the structural, magnetic and magnetocaloric properties in La0.65Ca0.35−xKxMnO3 (0?x?0.2) powder samples have been investigated. Our samples have been synthesized using the solid-state reaction method at high temperature. The parent compound La0.65Ca0.35MnO3 is an orthorhombic (Pbnm space group) ferromagnet with a Curie temperature TC of 248 K. X-ray diffraction analysis using the Rietveld refinement show that all our synthesized samples are single phase and crystallize in the orthorhombic structure with Pbnm space group for x?0.1 and in the rhombohedral system with R3¯c space group for x=0.2 while La0.65Ca0.2K0.15MnO3 sample exhibits both phases with different proportions. Magnetization measurements versus temperature in a magnetic applied field of 50 mT indicate that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. Potassium doping leads to an enhancement in the strength of the ferromagnetic double-exchange interaction between Mn ions, and makes the system ferromagnetic at room temperature. Arrott plots show that all our samples exhibit a second-order magnetic-phase transition. The value of the critical exponent, associated with the spontaneous magnetization, decreases from 0.37 for x=0.05 to 0.3 for x=0.2. A large magnetocaloric effect (MCE) has been observed in all samples, the value of the maximum entropy change, |ΔSm|max, increases from 1.8 J/kg K for x=0.05 to 3.18 J/kg K for x=0.2 under a magnetic field change of 2 T. For x=0.15, the temperature dependence of |ΔSm| presents two maxima which may arise from structural inhomogeneity.  相似文献   

9.
A series of the double-doping samples La(2+4x)/3Sr(1−4x)/3Mn1–xCuxO3(0?x?0.2)(0?x?0.2)with the Mn3+/Mn4+ ratio fixed at 2:1 and the single-doping samples La2/3Sr1/3Mn1–xCuxO3(0?x?0.2)(0?x?0.2) have been investigated. For the double-doping samples, though the ratio Mn3+/Mn4+=2:1 has been generally recognized the optimum ratio, the Curie temperature TCTC and metallic–insulator transition temperature Tp1Tp1 are more rapidly decreased by Cu substitution than that corresponding to single-doping samples. And the resistivity ρρ value for the double doping is larger about two or three orders of magnitude than that corresponding to single doping. At the same time, two resistivity peaks and two magnetoresistance (MR) peaks appear. We suggest that for the double-doping samples the A-site cation size 〈rA〉 and the A-site mismatch factor σ2σ2 decreases with increasing doping level, which leads to the system microstructural distortion. This microstructural distortion makes the Mn3+–O–Mn4+ cut off more cluster-spin except for the clusters induced by Cu. These cluster interfaces contribute to ρρ, which exceeds far the contribution of eg electron decreasing with doping increasing in the single doping. At the same time, such interface scattering also gives rise to the appearance of second peak for the double-doping samples. The experimental results shows that double doping could be also a potential way in tuning colossal MR (CMR), which can give a guide for the adequate selection of CMR materials.  相似文献   

10.
La1−xCaxMnO3+δ (0.0?x?1.0) samples were prepared and their resistivity and Seebeck coefficients were measured in the high-temperature range. Ca doping changes the ratio of Mn3+/Mn4+ and influences the electronic transport behavior markedly. With the increase of Ca concentration, the samples change from a p-type semiconductor to an n-type one and Seebeck coefficient becomes increasingly negative. Low doping (x=0.2) and high doping (x=0.8) induces the drop of the resistivity compared with undoped LaMnO3+δ and CaMnO3+δ samples due to the rise of carrier concentration. However, the resistivity of moderate-doped samples (x=0.4, 0.6) is larger than low- and high-doped samples because dopant scattering decreases carrier mobility.  相似文献   

11.
郑琳  周敏  赵建军  成昭华  张向群  邢茹  张雪峰  鲁毅 《中国物理 B》2011,20(8):87501-087501
The magnetic and electrical properties of nonmagnetic Ga +3 ion substitution for Mn site are investigated in the bilayer manganite La 1.2 Sr 1.8 Mn 2 O 7.When the Mn is substituted by Ga,the ferromagnetic property obviously weakens,the magnetic transition temperature decreases and a spin-glass behaviour occurs at low temperature.Meanwhile,doping causes the resistivity to dramatically increase,the metal-insulator transition temperature to disappear,and a greater magneto-resistance effect to occur at low temperature.These effects result from the fact that Ga substitution dilutes the magnetic active Mn-O-Mn network and weakens the double exchange interaction,and further suppresses ferromagnetic ordering and metallic conduction.  相似文献   

12.
Planar CdBxF2−xp-CdF2–CdBxF2−x sandwich nanostructures prepared on the surface of the n-type CdF2 bulk crystal are studied to register the spin transistor and quantum spin Hall-effects. The current–voltage characteristics of the ultra-shallow p+n junctions verify the CdF2 gap, 7.8 eV, and the quantum subbands of the 2D holes in the p-type CdF2 quantum well confined by the CdBxF2−xδ-barriers. The temperature and magnetic field dependencies of the resistance, specific heat and magnetic susceptibility demonstrate the high temperature superconductor properties for the CdBxF2−xδ-barriers. The value of the superconductor energy gap, 2Δ = 102.06 meV, determined by the tunneling spectroscopy method appears to be in a good agreement with the relationship between the zero-resistance supercurrent in superconductor state and the conductance in normal state, πΔ/e, at the energies of the 2D hole subbands. The results obtained are evidence of the important role of the multiple Andreev reflections in the creation of the high spin polarization of the 2D holes in the edged channels of the sandwich device. The high spin hole polarization in the edged channels is shown to identify the mechanism of the spin transistor and quantum spin Hall-effects induced by varying the top gate voltage, which is revealed by the first observation of the Hall quantum conductance staircase.  相似文献   

13.
We report the synthesis, structure and low-field magnetotransport properties of Mischmetal (Mm)-doped La0.7−xMmxCa0.3MnO3 (0?x?0.45) manganite. Mischmetal—Mm—is a natural mixture of rare earth elements La, Ce, Pr and Nd with ∼28%, 50%, 6% and 16% composition, respectively. All the samples crystallize in orthorhombic structure. Increasing x (Mm), corresponding to decreasing the La-site average ionic radii (〈rA〉) hence increasing the size mismatch (i.e. variance σ2), results in strong suppression of ferromagnetism (TC) and the associated metallicity (TIM). It may be pointed out that Mm (La, Ce, Pr and Nd) substitution has been done to create two effects. First, creation of multivalence of Mn (2+, 3+ and 4+) via Ce substitution and second to create higher degree of disorder due to size difference brought in not only by Ce but also by Pr and Nd. Evidences and arguments based on XPS analysis suggest that multivalent ions La, Mm and Ca, and the resulting presence of Mn2+, Mn3+ and Mn4+, causes the simultaneous operation of ferromagnetism-double exchange (Mn2+/Mn3+ and Mn3+/Mn4+) and antiferromagnetic-superexchange (Mn3+/Mn3+ and Mn2+/Mn2+) interaction. In addition, Mm doping also creates inhomogenities at La—as well as Mn—site due to size and valency difference. A curiously huge magnetoresistance as high as ∼63% for x=0.35, under a moderate magnetic field of ∼10 kOe has been observed and even at low magnetic field of ∼3 kOe MR is ∼30%. The competing double exchange and superexchange coupled with inhomogenities are the most likely cause for the occurrence of large ∼63% CMR in the Mm-doped LCMO.  相似文献   

14.
Crystal structure and magnetic properties of magnetostrictive compounds Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx (0?x?0.15) have been investigated at room temperature. The matrix of these compounds keeps a cubic MgCu2-type structure. Lattice parameter a of the Laves phase decreases to reach a minimum at x=0.10, then increases with increasing boron content. Through analyzing the Mössbauer spectra, the easy magnetization direction (EMD) for all samples is confirmed to lie along 〈111〉 direction at room temperature, suggesting the presence of the giant magnetostriction. The mean hyperfine field Hhf and the deduced iron moment μFe increase with increasing boron content, resulting in the enhancement of both Curie temperature TC and spin reorientation temperature Tr. Although the addition of B enlarges the magnetocrystalline anisotropy constant K1, the composition dependence of the ratio λ/K1 for Tb0.36Dy0.64(Fe0.85Co0.15)2−xBx, however, reaches a maximum value at x=0. 05 under high magnetic fields.  相似文献   

15.
A series of Mn-site Co-doping samples La2/3Ca1/3Mn1−xCoxO3 (0?x?0.15) have been prepared. The structure, magnetic and transport properties of this system have been systematically investigated. All the samples showed good single phase, and the lattice parameters decreased with the increase of doping concentration x. Only one paramagnetic–ferromagnetic transition was observed. The Curie temperature TC decreases gradually and the transition width becomes wider with the increase of x. The abnormal transport properties were induced by Co doping, characterized by the double metal–insulator transitions and low-temperature minimum behavior. The present results are discussed and possible explanations were given based on the related theory and previous reported results.  相似文献   

16.
Self-doped manganites with nominal composition La0.6−xSr0.4MnO3−δ (0≤x≤0.175) have been prepared by the sol–gel method. The X-ray diffraction (XRD) patterns and magnetic measurements indicate that the samples have two phases with the ABO3 perovskite structure being the dominant phase and Mn3O4 being the minor phase when the doping level x≥0.05. On the basis of the thermal equilibrium theory of crystal defects, the contents of various ions in the perovskite phases were estimated, in which there are Mn2+ ions and no vacancies at A sites. The ion contents have been corrected by Rietveld fitting of the powder samples' X-ray diffraction data. The change tendency of the Curie temperature TC vs. the Mn4+ ion content ratio at the B sites of ABO3 perovskite phase is in accord with the experimental result of the samples La1−xSrxMnO3.  相似文献   

17.
研究了层状钙钛矿锰氧化物La1.2Sr1.8Mn2O7中Mn被Co和Cr替代对磁性能的影响.Co替代Mn后,长程铁磁序被破坏,铁磁性减弱,出现团簇玻璃态和自旋玻璃态,表明Co离子和Mn离子之间不存在双交换作用.而Mn被Cr替代后长程铁磁序仍然保持,证实Cr3+和Mn3+之间存在铁磁性交换作用. 关键词:  相似文献   

18.
Perovskite manganites with nominal composition La0.7Sr0.3−xMnO3−δ (0.00≤x≤0.20) have been prepared by the sol-gel method with the highest heat treatment temperature being 1073 K. The XRD patterns indicate that when the doping level is x≤0.10 the samples have only a single phase, with the R3?c perovskite structure, while for x>0.10, the samples have two phases with the R3?c perovskite being the dominant phase and Mn3O4 being the second phase. A quantitative analysis and Rietveld fitting of the X-ray powder diffraction data indicate that on the basis of the thermal equilibrium theory of crystal defects there are Mn2+ ions at the A sites and Mn3+ plus Mn4+ ions at the B sites in the ABO3 perovskite phase. The curves of magnetization versus applied magnetic field at 10 K showed that the magnetic moments of the Mn2+ ions at the A sites are antiparallel to those of the Mn3+ and Mn4+ ions at the B sites.  相似文献   

19.
The electrochemical characteristics of a La0.8Sr0.2Co0.2Fe0.8O3 − δ cathode electrode interfaced to the CGO layer of a double layer CGO/YSZ electrolyte were studied using cyclic voltammetry, at temperatures of 600 to 850 °C and under oxygen partial pressures ranging from 0.07 to 21 kPa. The aim was to identify the electrochemical processes taking place under cathodic polarization on the basis of differences in the features of the cyclic voltammograms with changing conditions. Depending on temperature, sweep rate and oxygen partial pressure, current peaks appeared both in the forward and backward scans. Furthermore, reversed hysteresis was observed, i.e. higher currents in the backward scan than in the forward scan, with increasing oxygen partial pressure and decreasing temperature. The observed behavior was related to the electrochemical redox of B-sites and concomitant stoichiometry change as well as to the competing reaction of electrochemical oxygen redox, taking also into account the competitive action of chemical reactions occurring in the presence of gaseous oxygen.  相似文献   

20.
Nano-composite Ba1−xSr(x)TiO3 (BST), where x=0.01–0.50 and doped with different concentrations of iron Ba(1−xy)Sr(x)TiFe (y)O3 (BSTF), where x=0.01 and y=0.01–0.05 powders were prepared by sol–gel method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号