首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selective and large polarization of current injected into semiconductor (SC) is predicted in ferromagnet (FM)/quantum dot (QD)/SC system by varying the gate voltage above the Kondo temperature. In addition, spin-dependent Kondo effect is also revealed below Kondo temperature. It is found that Kondo resonances for up spin state are suppressed with increasing of the polarization P of the FM lead. While the down one is enhanced. The Kondo peak for up spin is disappear at P=1.  相似文献   

2.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

3.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.  相似文献   

4.
Boundary conditions are derived that determine the penetration of spin current through an interface of two noncollinear ferromagnets with an arbitrary angle between their magnetization vectors. We start from the well-known transformation properties of an electron spin wave functions under the rotation of a quantization axis. It allows directly find the connection between partial electric current densities for different spin subbands of the ferromagnets. No spin scattering is assumed in the near interface region, so that spin conservation takes place when electron intersects the boundary. The continuity conditions are found for partial chemical potential differences in the situation. Spatial distribution of nonequilibrium electron magnetizations is calculated under the spin current flowing through a contact of two semi-infinite ferromagnets. The distribution describes the spin accumulation effect by current and corresponding shift of the potential drop at the interface. These effects appear strongly dependent on the relation between spin contact resistances at the interface.  相似文献   

5.
Some exact identities connecting one- and two-particle Green's functions in the presence of spin–orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin–orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory.  相似文献   

6.
The interplay between spin-orbit interaction in semiconductor valence bands and an adiabatic rotational distortion of the wave function of a charge carrier leads to the scalar spin-orbit-rotation term in the effective-mass Hamiltonian of the conduction-band electron. The physical origin of this result lies in the fact that, similarly to magnetic field effects, the motion of a particle and the phase of its wave function may be affected by the vector potential of the inertial Coriolis field. Here we present a straightforward derivation of this interaction within the multiband envelope function approximation.  相似文献   

7.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

8.
Insertion of a resistive contact between a ferromagnetic metal and a semiconductor microstructure is of critical importance for achieving efficient spin injection into a semiconductor. However, the equations of the diffusion theory are rather cumbersome for the junctions including such contacts. A technique based on deriving a system of self-consistent equations for the coefficients of spin injection, γ, through different contacts are developed. These equations are concise when written in the proper notations. Moreover, the resistance of a two-contact junction can be expressed in terms of γ's of both contacts. This equation makes calculating the spin valve effect straightforward, allows to find an explicit expression for the junction resistance and to prove that its nonequilibrium part is positive. Relation of these parameters to different phenomena like spin-e.m.f. and the contact transients is established. Comparative effect of the Coulomb screening on different parameters is clarified. It is also shown that the spin non-conservation in a contact can have a dramatic effect on the non-equilibrium resistance of the junction. Received 2 May 2002 / Received in final form 26 July 2002 Published online 15 October 2002 RID="a" ID="a"Also at the Department of Physics, MIT, Cambridge, Massachusetts 02139, USA e-mail: erashba@mailaps.org  相似文献   

9.
The quasiclassical Green function formalism is used to describe charge and spin dynamics in the presence of spin-orbit coupling. We review the results obtained for the spin Hall effect on restricted geometries. The role of boundaries is discussed in the framework of spin diffusion equations.  相似文献   

10.
Yilin Mi  Ming Zhang  Hui Yan 《Physics letters. A》2008,372(20):3734-3737
Spin injection across ferromagnet/organic semiconductor system with finite width of the layers was studied theoretically considering spin-dependent conductivity in the organic-semiconductor. It was found that the spin injection efficiency is directly dependent on the difference between the conductivity of the up-spin and down-spin polarons in the spin-injected organic system. Furthermore, the finite width of the structure, interfacial electrochemical-potential and conductivity mismatch have great influence on the spin injection process across ferromagnet/organic semiconductor interface.  相似文献   

11.
Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a ‘fixed frame’, and it can be viewed as an ‘analogous system’ for non-Abelian transport in the same spirit as Volovik’s identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the ‘fixed frame’ context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw’s scheme: non-Abelian hydrodynamical currents can be factored in a ‘non-coherent’ classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The “particle based hydrodynamics” of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non-conservation of the incoherent spin currents of the high temperature limit. We analyze the quantum-mechanical single particle currents of relevance to mesoscopic transport with as highlight the Ahronov-Casher effect, where we demonstrate that the intricacies of the non-Abelian transport render this effect to be much more fragile than its abelian analog, the Ahronov-Bohm effect. We subsequently focus on spin flows protected by order parameters. At present there is much interest in multiferroics where non-collinear magnetic order triggers macroscopic electric polarization via the spin-orbit coupling. We identify this to be a peculiarity of coherent non-Abelian hydrodynamics: although there is no net particle transport, the spin entanglement is transported in these magnets and the coherent spin ‘super’ current in turn translates into electric fields with the bonus that due to the requirement of single valuedness of the magnetic order parameter a true hydrodynamics is restored. Finally, ‘fixed-frame’ coherent non-Abelian transport comes to its full glory in spin-orbit coupled ‘spin superfluids’, and we demonstrate a new effect: the trapping of electrical line charge being a fixed frame, non-Abelian analog of the familiar magnetic flux trapping by normal superconductors. The only known physical examples of such spin superfluids are the 3He A- and B-phase where unfortunately the spin-orbit coupling is so weak that it appears impossible to observe these effects.  相似文献   

12.
Spin dynamics of two-dimensional electron gas confined in an asymmetrical quantum well is studied theoretically in the regime where the scattering frequency is comparable with the spin precession frequency due to the conduction band spin splitting. The spin polarization is shown to demonstrate quantum beats. If the spin splitting is determined by both bulk and structural asymmetry mechanisms the beats are damped at zero temperature even in the absence of a scattering. We calculate the decay of spin beats due to the thermal broadening of the electron distribution function and electron scattering. The magnetic field applied along the structure growth axis is shown to increase the frequency of the beats and shift system towards the collision dominated regime.  相似文献   

13.
We have shown that the non-Abelian spin-orbit gauge field strength of the Rashba and Dresselhaus interactions, when split into two Abelian field strengths, the Hamiltonian of the system can be re-expressed as a Landau level problem with a particular relation between the two coupling parameters. The quantum levels are created with up and down spins with opposite chirality and leads to the quantum spin Hall effect.  相似文献   

14.
We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field applied to the QD.  相似文献   

15.
The transport properties of the Datta and Das's spin transistor with the center normal region (or the quantum dot) having Rashba spin–orbit interaction and electron–electron (e–e) interaction U are investigated. We find while intra-dot level is near or above the chemical potential of the leads, the modulation efficiency of this spin transistor almost is not influenced by U. On the other hand, when the level is below the chemical potential, e–e interaction U may affect the modulator efficiency, because in this case the existence of e–e interaction can change the transport properties of the quantum dot. But the modulation efficiency still keep enough large and the spin transistor can effectively work.  相似文献   

16.
Using the Keldysh nonequilibrium Green function method, we theoretically investigate the electron transport properties of a quantum dot coupled to two ferromagnetic electrodes, with inelastic electron-phonon interaction and spin flip scattering present in the quantum dot. It is found that the electron-phonon interaction reduces the current, induces new satellite polaronic peaks in the differential conductance spectrum, and at the same time leads to oscillatory tunneling magnetoresistance effect. Spin flip scattering suppresses the zero-bias conductance peak and splits it into two, with different behaviors for parallel and anti-parallel magnetic configuration of the two electrodes. Consequently, a negative tunneling magnetoresistance effect may occur in the resonant tunneling region, with increasing spin flip scattering rate.  相似文献   

17.
The question how to determine lower many-point functions in terms of higher ones, which we call the descending problem, is discussed for the (ø4)1+3 model of quantum field theory. Equations to be considered are non-linear non-compact operator equations in complex Banach spaces.Several sufficient sets of conditions for convergence of successive approximation schemes are presented for small values of the renormalised coupling constant. Local uniqueness of solution is proved under certain conditions.  相似文献   

18.
We propose to achieve spin injection in an organic device by a spin polarized self-assembled monolayer (SPSAM), which is used to tune the spin-dependent coupling between electrode and organic polymer. The results show that spin injection can be realized by both the spin selection and spin manipulation effects of the SPSAM. Interestingly, we found spin polarized wave-packet as a consequence of the spin injection, which is a mix of a normal spin polaron and a spinless bipolaron.  相似文献   

19.
Yilin Mi  Ming Zhang  Hui Yan 《Physics letters. A》2008,372(42):6434-6437
We use the two-component drift-diffusion model to study the spin density polarization in an organic semiconductor system under an external electric-field. The spin-dependent electrical-conductivity, the drift spin current and the diffusion spin current in the organic semiconductor are self-consistently derived. It is found that the spin current could be strongly influenced by the spin-dependent electrical-conductivity. When the spin-dependent conductivity varies from 0 to 0.5%, the spin current presents a very pronounced change almost three orders in magnitude. The electric-field could effectively enhance the spin-dependent electrical-conductivity and the spin current. Furthermore, the spin-dependent electrical-conductivity is position sensitive, but its position sensitivity goes down while electric-field is larger than about 1 mV/μm.  相似文献   

20.
La0.67Ca0.33MnO3/Alq3/Co sandwiched-structure organic spin valves are fabricated by vacuum thermal evaporation method. A giant magnetoresistance (GMR) of 14% is observed at low temperature 100K. At 30K, the magnetoresistance can increase to 50%. The large GMR of the device is attributed to the high spin polarization and low conductivity of the La0.67Ca0.33MnO3 contact. The magnetoresistance ΔR/R and the coercive field of the Co electrode depend strongly on temperature. The large high-field magnetoresistance reported on La0.67Sr0.33MnO3/Alq3/Co organic spin valves [Nature 427 (2004) 821] is not observed in our La0.67Ca0.33MnO3/Alq2/Co organic spin valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号