首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orientational transitions induced by an external magnetic field in a ferronematic (a suspension of single-domain magnetic particles in a nematic liquid crystal) are considered in the framework of the continuum theory. The surface potential of the interaction between the ferronematic and the bounding plates is used taking into account the fourth-order anisotropy (the modified Rapini potential). It is shown that the ferronematic can be in one of three phases that correspond to three types of orientational ordering: homogeneous ordering, inhomogeneous ordering, and saturation state. The influence of the segregation effect of magnetic particles on the nature of orientational transitions of the ferronematic in an external field is studied. It is established that the transitions between these phases can be of the first and second order depending on the values of the anchoring parameters and the segregation parameter. Tricritical values of the parameter of anchoring anisotropy and the segregation parameter are determined.  相似文献   

2.
The studied ferronematic is a nematic liquid crystal (ZLI1695) of low negative anisotropy of the diamagnetic susceptibility (χa<0) doped with the magnetic particles Fe3O4. Structural instabilities are interpreted within Burylov and Raikher's theory. The high magnetic fields were oriented perpendicular (Freedericksz transition) or parallel to the initial director. Using capacitance measurements the Freedericksz threshold magnetic field of the ferronematic BFN, and the critical magnetic field Bmax, at which the initial parallel orientation between the director and the magnetic moment of magnetic particles breaks down, have been determined. The values of these quantities have been used to estimate the surface density of the anchoring energy W of liquid crystal molecules on the surface of the magnetic particles. The obtained values indicate a soft anchoring of the liquid crystal on the magnetic particles with a preferred parallel orientation of the magnetic moment of magnetic particles and the director.  相似文献   

3.
The orientational phases in an antiferromagnetic liquid crystal (ferronematic) based on the nematic liquid crystal with the negative anisotropy of diamagnetic susceptibility are studied in the framework of the continuum theory. The ferronematic was assumed to be compensated; i.e., in zero field, impurity ferroparticles with the magnetic moments directed parallel and antiparallel to the director are equiprobably distributed in it. It is established that under the action of a magnetic field the ferronematic undergoes orientational transitions compensated (antiferromagnetic) phase–non-uniform phase–saturation (ferrimagnetic) phase. The analytical expressions for threshold fields of the transitions as functions of material parameters are obtained. It is shown that with increasing magnetic impurity segregation parameter, the threshold fields of the transitions significantly decrease. The bifurcation diagram of the ferronematic orientational phases is built in terms of the energy of anchoring of magnetic particles with the liquid-crystal matrix and magnetic field. It is established that the Freedericksz transition is the second-order phase transition, while the transition to the saturation state can be second- or first-order. In the latter case, the suspension exhibits orientational bistability. The orientational and magnetooptical properties of the ferronematic in different applied magnetic fields are studied.  相似文献   

4.
We studied the structural transitions in ferronematics based on the thermotropic nematic liquid crystal MBBA (4 -methoxybenzylidene-4-n-butylaniline) having a nematic-to-isotropic transition temperature T N–I?=?48.0C and in MBBA-based ferronematics doped with a magnetic suspension consisting of Fe3O4 particles (10?nm in diameter) coated with oleic acid as a surfactant. The ferronematic samples were prepared with different volume concentrations of magnetic particles φ?=,1× 10?4, 2× 10?4 and 5×10?4. The temperature dependences of the critical magnetic fields in a bias electric field under strong applied magnetic fields are presented. We calculated the surface density of anchoring energy W at the nematic–magnetic particle boundary. Scaling of the structural transition in the MBBA and MBBA-based ferronematics with the temperature of the nematic-to-isotropic transition was observed.  相似文献   

5.
This paper presents the study of the influence of magnetic field on the refractive index profile of homeotropically oriented 6CHBT-based ferronematic liquid crystal cell. The direction of magnetic field was chosen in a way which ensures the one-dimensional deformation of directors field. The FN cell was placed between polarizers. On a basis of Burylov-Raikher model and measurements of light transmission throughout the ferronematic layer the mean volume concentration of magnetic particles dispersed in 6CHBT and refractive index profiles induced by magnetic filed were determined. Moreover the range of magnetic field intensity was determined in which the distribution of tilt angle can be described in a scope of the Burylov-Raikher theory and the small tilt angle approximation.  相似文献   

6.
We examine the effect of shear flow on the orientational phase transitions induced by a magnetic field in ferronematic liquid crystals. Continuum approach based on the generalized Leslie–Ericksen theory is used to describe the dynamics of ferronematic liquid crystals. We consider three orientations of the magnetic field in a plane of shear flow. Stationary solutions for the director and the magnetization are obtained as functions of the magnetic field strength for different values of material parameters. Our results show that shear flow can lead to the shift of the field thresholds or to a “smoothing” of the magnetic field-induced transitions in ferronematics. In the limiting case of pure nematic liquid crystals, we revealed threshold effects, which are unstipulated by the orientational elasticity of a liquid crystal, in contrast to the conventional Fréedericksz transition.  相似文献   

7.
A possibility of the first-order transition, as well as reentrant transitions, induced by an external magnetic field between the homeotropic phase and the hybrid homeotropically planar phase in a ferronematic liquid crystal (ferronematic) with bistable anchoring at the layer boundary is demonstrated in the framework of a continuum theory. The critical values of the material parameters of the ferronematic, the anchoring energy, the thickness of the layer, and the magnetic field strength, for which this transition is possible, are determined. The cases of positive and negative diamagnetic anisotropy of the ferronematic are considered.  相似文献   

8.
The Freedericksz transition in splay and bend geometry in a ferronematic (a suspension of single-domain magnetic particles in a nematic liquid crystal) is considered in the framework of the continuum theory. In zero magnetic field, the ferronematic was assumed to be compensated (i.e., having equal fractions of an impurity with magnetic moments directed parallel and antiparallel to the local director). Spatial distortions of the director and the concentration redistribution of the magnetic impurity in the ferronematic layer are studied as functions of the applied magnetic field and the segregation parameter. It is shown that the magnetic-field induced Freedericksz transition from the homogeneous to the inhomogeneous state has a threshold nature. The transition field as a function of the material parameters of the ferronematic is determined analytically. Magnetization of the ferronematic and its optical properties for a strong and weak segregation as functions of the magnetic field are studied.  相似文献   

9.
We analyze uniform orientation phases in soft ferronematics (suspensions of magnetic nanoparticles in nematic liquid crystals) induced by electric and magnetic fields. It is shown that the competition between the electric and magnetic fields can lead to various sequences of orientation transitions in a ferronematic depending on the energy of coupling between the director and magnetization. We obtain and analyze phase diagrams of these transitions. A sequence of re-entrant transitions in the orientation structure (angular phase-homeotropic phase-angular phase-planar phase) is predicted for a certain range of the coupling energies and electric field strengths.  相似文献   

10.
It was found that the effect of the ionic modification of anchoring in liquid-crystal droplets can be implemented in the inverse regime. Droplets of 4-n-pentyl-4′-cyanobiphenyl nematic doped with ionic cetyltrimethylammonium bromide surfactant were dispersed in polyvinyl alcohol and investigated. In the initial state, nematic droplets have a radial structure with homogeneous homeotropic anchoring typical of the surfactant used. In the presence of a dc electric field, the boundary conditions become tangential in the surface area left by the cations. That results in the transformation of an orientational structure following by various scenarios. For the new states of nematic droplets, the distribution of the director field was analyzed and the corresponding textural patterns were numerically calculated.  相似文献   

11.
A new method for quick and pretty accurate measurements of splay, twist and bend elastic constants of nematic liquid crystals is experimentally verified. The main concept relies on exploiting only the electric field and determining magnitudes of nematic elastic constants from threshold fields for Freedericksz transitions in only one hybrid in-plane-switched cell. In such cell the deformations of an investigated liquid crystal are controlled by three separated pairs of electrodes confining measurement domains. In two of them inter-digital electrodes are mounted on one cell cover. Splay, twist and bend elastic constants can be measured by a proper choice of electrodes?? configuration together with orienting cover coatings (without applying magnetic fields). In this paper, we describe layout of our cells and results of experimental tests by using different liquid crystals: 5CB and 6CHBT (with positive dielectric anisotropy), Demus?? esters (with negative dielectric anisotropy) and new liquid crystals mixtures produced in our university.  相似文献   

12.
Spatial distortions of the director field and magnetization of a ferronematic (suspension of magnetic nanoparticles in a nematic liquid crystal) that are induced by simultaneous action of electric and magnetic fields are studied with allowance for the flexoelectric polarization of the liquid-crystalline matrix. Soft coupling of liquid crystal and magnetic particles and layer boundaries is considered. The dependence of the phase lag of the transmitted light on the external magnetic field is analyzed.  相似文献   

13.
We have measured the Stokes drag on magnetic nanowires suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The effective drag viscosity for wires moving perpendicular to the nematic director differs from that for motion parallel to the director by factors of 0.88 to 2.4, depending on the orientation of the wires and their surface anchoring. When the force on the wires is applied at an oblique angle to the director, the wires move at an angle to the force, demonstrating the existence of a lift force on particles moving in a nematic. This dynamic lift is significantly larger for wires with homeotropic anchoring than with longitudinal anchoring in the experiments, suggesting the lift force as a mechanism for sorting particles according to their surface properties.  相似文献   

14.
We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.  相似文献   

15.
Static Kerr effect and the pre-transition temperature were investigated for the 6CHBT, 6BOBT and the nematic mixtures, M1 (40% 6CHBT: 60% 6BOBT), M2 (30% 6CHBT: 70% 6BOBT) and M3 (20% 6CHBT: 80% 6BOBT) at temperatures above the nematic-isotropic transition temperature. The linear dependence of (T-T*)−1 on the Kerr constant is found to be in good agreement with the predications of the Landau-De Gennes model. The hypothetical second order phase transition temperatures and susceptibility values were determined for these compounds.  相似文献   

16.
The active oxygen gas arising from a plasma reactor is used to realize progressive chemical modifications onto silane coatings that could be particularly interesting as alignment layers for liquid crystal display applications. Depending on the oxygen density grafted onto the substrate, these alignment layers provide different zenithal anchoring angles, or pretilt angles, with anchoring transitions, for polar and non-polar nematic liquid crystals as 5CB and MBBA, respectively. The anchoring transitions are found to be smoother with the polar nematics. Such a behavior is discussed in terms of the differential wetting model by adding a cosine term to the interaction energy between the nematic and the substrate. A local justification is proposed for this symmetry breaking term. Received: 18 May 1998  相似文献   

17.

Influence of magnetic field on orientation and magnetic properties of a compensated ferrocholesteric, a suspension of needle-like ferromagnetic particles in a cholesteric liquid crystal, was studied theoretically. A phase transition from a ferrocholesteric to a ferronematic state in a magnetic field oriented normally to the axis of the helical structure was considered. The dependences of the transition field to the ferronematic phase on the material parameters of the suspension and of the helical structure pitch and magnetization on the field strength were investigated. A possibility of existence of a reentrant ferrocholesteric phase was shown.

  相似文献   

18.
Highly resolved luminescence and luminescence excitation spectra of recently synthesized LnL3bpy complexes, where Ln=Eu3+, Tb3+, bpy=2,2′- bipyridyne and L=phosphoroazo derivative of β-diketone: CCl3C(O)NP(O)(OCH3)2, in solid state and dissolved in nematic liquid crystal 6CHBT [4-(isothiocyanatophenyl)-1-(trans-4-hexyl)cyclohexane] were measured. The photoluminescence intensity of the complexes dissolved in 6CHBT was found to exhibit a strong dependence on the electric field. The mechanism of the effect and reason of its asymmetry with respect to the sign of electric field are discussed in the paper. Luminescence decay time in various environments and experimental quantum yields of the luminescence of these compounds in CDCl3 and CHCl3 solutions were measured.  相似文献   

19.
The influence of the external magnetic field on the orientational structure and magnetic properties of the ferrocholesteric is analyzed. A soft homeotropic coupling between the magnetic particles and the cholesteric molecules is assumed. The diamagnetic anisotropy of the matrix is chosen to be positive. In this case, the dipolar and quadrupolar mechanisms of orientational interaction with the external field compete with each other. The field being applied normal to the helix. Using the continuum theory, the occurrence of magnetic-field-induced ferrocholesteric–ferronematic transition is studied. The transition field as a function of the material parameters of a ferrocholesteric is found. It is shown that rising the field strength in the ferronematic phase leads to a change in the coupling between the particles and the director from homeotropic to planar one. A study on the structure of the domain walls in ferronematic phase is undertaken.  相似文献   

20.
The X-ray diffraction, magnetization and electrical conductivity measurements for Gd0.9A0.1CoO3−δ (A=Ba, Sr) have been made. The complicated magnetic behavior, including the paramagnetic-ferromagnetic-antiferromagnetic and paramagnetic-ferromagnetic transitions, was found for Ba- and Sr-doped samples. The gradual insulator-metal transitions were observed in a wide temperature range T=600−800 K. The complex magnetic and transport data could be explained on the basis of the structural phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号