首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the magnetization reversal in ultrathin [Co/Pt]n films (n=1, 2, and 4) using magneto-optical Kerr microscopy. These materials demonstrate unusual asymmetries in the activity of nucleation centers and domain wall motion. It was found that application of very high holding magnetic field prior to magnetization reversal, exceeding some critical value much larger than the apparent saturation field, suppresses the subsequent ‘asymmetric’ nucleation centers, activity. We revealed that the ‘asymmetric’ nucleation centers become active again after subsequent reversal cycles coming from a smaller holding field and studied how the asymmetry returns with the decrease of applied holding field. It was found that in low-coercivity ultrathin Co films, the asymmetry in domain wall velocity decreased sharply with the applied field increase and disappeared when the reversal field is greater than μ0H=1.5 mT.  相似文献   

2.
Magnetic and structural properties in [MnPd/Co]10 multilayers deposited onto Si(1 1 1) substrates have been investigated. The dependences of anisotropy and exchange bias on the thicknesses of both MnPd and Co layers have been studied. In most of the samples, the out-of-plane magnetic anisotropy and both large out-of-plane and in-plane exchange biases have been observed at cryogenic temperature below the blocking temperature TB≈240 K. With appropriate MnPd and Co thicknesses, we have obtained samples with a large out-of-plane exchange bias along with a large out-of-plane magnetic anisotropy. The origin of the out-of-plane magnetic anisotropy in the samples has been suggested to be due to the formation of CoPd interfacial alloys which have tensile in-plane strains, while the spin structure of the antiferromagnetic layer at the interface which is believed to be responsible for exchange bias may be the same as that of the bulk material. Also, the present study shows that the interplay between the out-of-plane magnetic anisotropy and exchange bias is evident in our multilayers and plays an important role in the out-of-plane exchange-bias mechanism.  相似文献   

3.
The SiNx (20 nm)/Tb30Co70 (90 nm)/SiNx (5 nm)/Co (3–37 nm)/SiNx (10 nm)/Si multilayer films are deposited on naturally oxidized Si wafer by magnetron sputtering. The saturation magnetization (Ms) of the multilayer films is increased with the thickness of high Ms ferromagnetic Co layer. The perpendicular coercivity (HcHc) value is increased with Co layer thickness as the thickness of the Co layer is lower than 15 nm and then decreases drastically when the thickness of the Co layer further increased. The increase of the HcHc value is owing to the interlayer exchange effect [Li Zhang, Physica B 390 (2007) 373] between TbCo and Co layers. Co under-layer with in-plane magnetic anisotropy would pin the magnetic moment of the TbCo layer near by the Co layer and cause the value of HcHc to increase. However, as the Co layer is thicker than a critical thickness, the HcHc value of the multilayer film would decrease. Therefore, the Co layer with in-plane magnetic anisotropy and soft magnetic properties is expected to dominate the magnetic properties of the multilayer films.  相似文献   

4.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

5.
The degree of order S of Mn–Ir layers and the exchange anisotropy of Mn–Ir/Co–Fe bilayers were investigated for various chemical compositions of Mn–Ir layers, underlayer materials, and underlayer thicknesses. It was found that: (1) The compositional range over which L12-phase Mn3Ir could be formed is 22–32 at% Ir and giant exchange anisotropy is obtained in this range. (2) Ru is favorable as an underlayer material for avoiding interdiffusion with the Mn–Ir layer during deposition on the temperature elevated substrate. (3) The underlayer thickness could be reduced to 5 nm while maintaining a giant exchange anisotropy in excess of 1 erg/cm2.  相似文献   

6.
Gilbert's damping constants, α, of Co(tCo)/Pt (1.4 nm) multilayer thin films are investigated by Q-band FMR analysis. α is calculated from the resonance width of the FMR spectrum. With decreasing tCo, the α value decreases from 0.034 (tCo=8.7 nm) to 0.023 (tCo=1.8 nm), and then increases to 0.037 (tCo=1.0 nm). The decrease of α with tCo>1.8 nm is probably due to the eddy current loss effects. The increase of α with tCo<1.8 nm would be caused by the increase of the distortion between the Co and the Pt layers at the interface. When the magnetic field direction was changed from θ=90° (parallel to the specimen) to θ=0° (perpendicular to the specimen), the α of all the specimens increased, and a sharp step in α was observed around θ=40°, where the α has the maximum value.  相似文献   

7.
Recent experiments show that on rather thick Co films deposition of Cu or adsorption of CO or C can switch the magnetization direction along the surface normal. We present semi-empirical self-consistent tight-binding calculations for a semi-infinite hcp Co(0001) crystal. It appears that the contribution of the magnetic anisotropy-energy from the surface layer favors the in-plane alignment of magnetic moments. Various surface perturbations (Cu deposition or CO adsorption, artificial suppression of surface magnetization), however, reduce this contribution considerably or even change the sign of the electronic part of the magnetic anisotropy energy, thus making conditions for perpendicular magnetization more favourable.  相似文献   

8.
Exchange-biased CrMn/Co bilayers with various thicknesses of Co sputtered onto Si(1 0 0) substrates by the RF sputtering system have been studied. Double-shifted loops have been observed with the thickness of Co layer in a narrow range and become single-shifted loops after some cycles of measurement. Those results are interpreted as the association of positive and negative exchange bias.  相似文献   

9.
Micromagnetic simulations have been performed in order to obtain deeper insight into the domain structures within multilayer films, as they are expected to differ from those of single films. These 2D calculations have been done in the case of multilayers exhibiting a moderate perpendicular anisotropy, with no indirect exchange coupling between the magnetic layers, where a “weak stripe" domain structure develops. First, these results are compared quantitatively to the very detailed experimental data available in the literature on the (Co/Au)N system. More generally, the nucleation of a stripe pattern in multilayers is discussed as a function of the magnetic parameters and the number of magnetic layers in the stack. Compared to a single film, two main differences appear in the equilibrium domain period and the magnetization profiles. The physical origin of these effects is discussed. Received 12 January 2001 and Received in final form 15 May 2001  相似文献   

10.
We have investigated the magnetic properties of trilayer films of Co–Ge–Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed.  相似文献   

11.
Interlayer exchange coupling in dc-magnetron sputtered Tb29.6Co70.4/FePt bilayers with different annealing temperatures of the FePt film have been investigated. The dependence of ordering degree on perpendicular magnetic properties of the FePt film was studied. The Tb29.6Co70.4/FePt film has high perpendicular coercivity and high saturated magnetization about 7.5 kOe, and 302 emu/cm3, respectively as the substrate temperature is 500 °C and annealing at 500 °C for 30 min. It also shows a strong exchange coupling between this FePt layer and Tb29.6Co70.4 layer. We also examined the interface wall energy in the exchange coupled Tb29.6Co70.4/FePt double layers.  相似文献   

12.
Bilayered Fe65Co35 (=FeCo)/Co films were prepared by facing targets sputtering with 4πMs∼24 kg. The soft magnetic properties of FeCo films were induced by a Co underlayer. Hc decreased rapidly when the Co underlayer was 2 nm or more. The films showed well-defined in-plane uniaxial anisotropy with the typical values of Hce=10 Oe and Hch=3 Oe, respectively. High frequency characteristics of the films show the films can work at 0.8 GHz with real permeability as high as 250.  相似文献   

13.
X.J. Liu 《Applied Surface Science》2008,254(10):3167-3174
Dilute (3.8 at.%) cobalt-doped ZnO thin films are deposited on LiTaO3 (LT) substrates with three different orientations [LT(1 1 0), LT(0 1 2) and LT(0 1 8)] by direct current reactive magnetron co-sputtering. The experimental results indicate that Co atoms with 2+ chemical valence are successfully incorporated into the ZnO host matrix on various oriented substrates, and the substrate orientations have a profound influence on the crystal growth and magnetization of Co:ZnO films. A large magnetic moment of 2.42μB/Co at room temperature is obtained in the film deposited on LT(0 1 2), while the corresponding values of the other films deposited on LT(1 1 0) and LT(0 1 8) are 1.21μB/Co and 0.65μB/Co, respectively. Furthermore, the crystal growth mode of Co:ZnO films on various oriented LT, the relationship between the microstructures and corresponding ferromagnetic properties are also discussed.  相似文献   

14.
Surface roughness caused by the grain growth of the RuCr non-magnetic intermediate layer (NMIL) was evaluated using the X-ray total reflection method. In the case of Ru NMIL, the value of root mean square roughness of NMIL (σ) increases from 0.59 to 1.45 nm with increase in Ar gas pressure and/or thickness of the Ru layer. Judging from the loop slope and normalized coercivity, the degree of magnetic isolation increases as σ increases, independent of the Cr content of a RuCr NMIL. Furthermore, it was found that σ of NMIL is strongly correlated with wettability to the seed layer material and is enhanced by the lattice extension of NMIL.  相似文献   

15.
The exchange coupling strength of NiFe/Cu/IrMn trilayer films was examined with both a new magneto optical Kerr effect (MOKE) method developed for the exchange coupling field determination and ferromagnetic resonance (FMR) measurements. We found that the value for exchange coupling field obtained by the MOKE technique coincided with FMR result with high accuracy. Other peculiarities of FMR measurements due to interlayer exchange coupling such as angular dependence of resonance field on Cu spacer thickness are also shown in the article.  相似文献   

16.
A TbFeCo film was deposited by DC magnetron sputtering and studied by transmission electron microscopy, polar and longitudinal magneto-optical Kerr effect, and magnetometry measurements. Transmission electron microscopy has shown the existence of lateral compositional inhomogeneity. Magneto-optical measurements have shown that the initial layer at the bottom consists of only magnetic perpendicular component and the top surface layer has a compositional inhomogeneity and consists of in-plane components and perpendicular one. The perpendicular components in the bottom and the surface layers have identical composition. Two in-plane components have been shown by magnetometry measurements. It is shown that phase segregation exists in the TbFeCo film and possible form of compositional inhomogeneity has been discussed. The two in-plane components are exchange coupled with a magnetization off-alignment of 35°. For the soft in-plane component, the in-plane and out-of-plane angular dependence of the exchange biasing is similar to those of the conventional one. Within temperatures from 100 to 300 K, the exchange field and the coercivity are both linear functions of temperature.  相似文献   

17.
The effect of soft layer thickness (tSoft) of CoTaZr–SiO2 and low Pt-containing CoCrPtO layers on media properties in hard/soft (H/S) stacked media is compared to media properties in conventional capping layer (CL) media. Coercivity and coercivity squareness in H/S stacked media continuously decrease with increasing tSoft, while they increase in CL media. H/S stacked media with CoTaZr–SiO2 layers having higher saturation magnetization and in-plane magnetic anisotropy constant exhibit stronger demagnetization effect. Compared to CL media, H/S stacked media with CoCrPtO soft layers improve signal-to-noise ratio and magnetic write width. However, the use of a relatively soft layer deteriorates adjacent track erasure and does not improve media writeability due to compensation effect between softer and harder layers to be used. These phenomena can be understood as undesirable side effects of a soft layer: higher demagnetization field and larger lattice mismatch.  相似文献   

18.
Pd nanocluster seeds were formed on a soft magnetic underlayer (SUL) using an electrochemical substitution reaction, and were utilized as an intermediate layer for a Co/Pd multilayered ([Co/Pd]n) perpendicular magnetic recording medium. A CoNiFeB film prepared with electroless deposition was used as SUL, which was immersed into a PdCl2 solution for the formation of Pd seeds. The Pd seeds were found to effectively reduce the size of magnetic domains in the [Co/Pd]n film deposited on them. The optimization of the concentration of the PdCl2 solution and the use of the pretreatment process with a SnCl2 solution were effective to obtain the smooth SUL surface with fine Pd seeds as small as 5 nm. The 20 nm-thick [Co/Pd]n film deposited on the optimized Pd seeds/CoNiFeB SUL exhibited a high coercivity of 7.8 kOe and a small magnetic domain size of 69 nm. These results indicated that the combination of the Pd seeds and the electroless-deposited SUL was desirable in terms of the improvement not only in the magnetic properties of [Co/Pd]n media but also in the mass productivity of the underlayer.  相似文献   

19.
20.
A systematic study of the magnetic properties by ion beam sputter-deposition system, was conducted in conjunction with the structure of FePt/FeMn multilayers fabricated onto MgO(0 0 1) substrates. Both parallel and perpendicular exchange biases were observed in the multilayers and were found to decrease drastically, as the deposition temperature is higher than 350 °C, which is evidently due to the interdiffusion at the interface. The thickness dependence study shows that the perpendicular magnetic anisotropy observed in the multilayers originates from surface anisotropy, being consistent with the decrease of perpendicular magnetic anisotropy as the deposition temperature is increased. The difference between parallel and perpendicular blocking temperatures that was clearly observed, is possibly due to the spin canting out of plane at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号