首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We first present new structural properties of a two-pair in various graphs. A two-pair is used in a well-known characterization of weakly chordal graphs. Based on these properties, we prove the main theorem: a graph G is a weakly chordal ()-free graph if and only if G is an edge intersection graph of subtrees on a tree with maximum degree 4. This characterizes the so called [4, 4, 2] graphs. The proof of the theorem constructively finds the representation. Thus, we obtain an algorithm to construct an edge intersection model of subtrees on a tree with maximum degree 4 for such a given graph. This is a recognition algorithm for [4, 4, 2] graphs.  相似文献   

2.
In this paper, we prove several new results on chromatic index critical graphs. We also prove that if G is a Δ(≥4)-critical graph, then
  相似文献   

3.
Ryjá?ek (1997) [6] defined a powerful closure operation on claw-free graphs G. Very recently, Ryjá?ek et al. (2010) [8] have developed the closure operation on claw-free graphs which preserves the (non)-existence of a 2-factor. In this paper, we introduce a closure operation on claw-free graphs that generalizes the above two closure operations. The closure of a graph is unique determined and the closure turns a claw-free graph into the line graph of a graph containing no cycle of length at most 5 and no cycles of length 6 satisfying a certain condition and no induced subgraph being isomorphic to the unique tree with a degree sequence 111133. We show that these closure operations on claw-free graphs all preserve the minimum number of components of an even factor. In particular, we show that a claw-free graph G has an even factor with at most k components if and only if (, respectively) has an even factor with at most k components. However, the closure operation does not preserve the (non)-existence of a 2-factor.  相似文献   

4.
Cycle is one of the most fundamental graph classes. For a given graph, it is interesting to find cycles of various lengths as subgraphs in the graph. The Cayley graph on the symmetric group has an important role for the study of Cayley graphs as interconnection networks. In this paper, we show that the Cayley graph generated by a transposition set is vertex-bipancyclic if and only if it is not the star graph. We also provide a necessary and sufficient condition for to be edge-bipancyclic.  相似文献   

5.
A graph X is called almost self-complementary if it is isomorphic to one of its almost complements , where denotes the complement of X and I a perfect matching (1-factor) in . If I is a perfect matching in and is an isomorphism, then the graph X is said to be fairly almost self-complementary if φ preserves I setwise, and unfairly almost self-complementary if it does not.In this paper we construct connected graphs of all possible orders that are fairly and unfairly almost self-complementary, fairly but not unfairly almost self-complementary, and unfairly but not fairly almost self-complementary, respectively, as well as regular graphs of all possible orders that are fairly and unfairly almost self-complementary.Two perfect matchings I and J in are said to be X-non-isomorphic if no isomorphism from X+I to X+J induces an automorphism of X. We give a constructive proof to show that there exists a graph X that is almost self-complementary with respect to two X-non-isomorphic perfect matchings for every even order greater than or equal to four.  相似文献   

6.
Acyclic edge colouring of planar graphs without short cycles   总被引:1,自引:0,他引:1  
Let G=(V,E) be any finite graph. A mapping C:E→[k] is called an acyclic edgek-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by .In 2001, Alon et al. conjectured that for any graph G it holds that ; here Δ(G) stands for the maximum degree of G.In this paper we prove this conjecture for planar graphs with girth at least 5 and for planar graphs not containing cycles of length 4,6,8 and 9. We also show that if G is planar with girth at least 6. Moreover, we find an upper bound for the acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that if G is such a graph, then .  相似文献   

7.
In this paper, we classify distance regular graphs such that all of its second largest local eigenvalues are at most one. Also we discuss the consequences for the smallest eigenvalue of a distance-regular graph. These extend a result by the first author, who classified the distance-regular graphs with smallest eigenvalue .  相似文献   

8.
For a finite group G, a Cayley graph on G is said to be normal if . In this note, we prove that connected cubic non-symmetric Cayley graphs of the ten finite non-abelian simple groups G in the list of non-normal candidates given in [X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math. 244 (2002) 67-75] are normal.  相似文献   

9.
We consider finite analogues of Euclidean graphs in a more general setting than that considered in [A. Medrano, P. Myers, H.M. Stark, A. Terras, Finite analogues of Euclidean space, J. Comput. Appl. Math. 68 (1996) 221-238] and we obtain many new examples of Ramanujan graphs. In order to prove these results, we use the previous work of [W.M. Kwok, Character tables of association schemes of affine type, European J. Combin. 13 (1992) 167-185] calculating the character tables of certain association schemes of affine type. A key observation is that we can obtain better estimates for the ordinary Kloosterman sum K(a,b;q). In particular, we always achieve , and in many (but not all) of the cases, instead of the well known . Also, we use the ideas of controlling association schemes, and the Ennola type dualities, in our previous work on the character tables of commutative association schemes. The method in this paper will be used to construct many more new examples of families of Ramanujan graphs in the subsequent paper.  相似文献   

10.
The boxicity of a graph H, denoted by , is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in Rk. In this paper we show that for a line graph G of a multigraph, , where Δ(G) denotes the maximum degree of G. Since G is a line graph, Δ(G)≤2(χ(G)−1), where χ(G) denotes the chromatic number of G, and therefore, . For the d-dimensional hypercube Qd, we prove that . The question of finding a nontrivial lower bound for was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795–5800].The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once).  相似文献   

11.
Let k be a positive integer and let G be a k-connected graph. An edge of G is called k-contractible if its contraction still results in a k-connected graph. A non-complete k-connected graph G is called contraction-critical if G has no k-contractible edge. Let G be a contraction-critical 5-connected graph, Su proved in [J. Su, Vertices of degree 5 in contraction-critical 5-connected graphs, J. Guangxi Normal Univ. 17 (3) (1997) 12-16 (in Chinese)] that each vertex of G is adjacent to at least two vertices of degree 5, and thus G has at least vertices of degree 5. In this paper, we further study the properties of contraction-critical 5-connected graph. In the process, we investigate the structure of the subgraph induced by the vertices of degree 5 of G. As a result, we prove that a contraction-critical 5-connected graph G has at least vertices of degree 5.  相似文献   

12.
In this paper, we consider the intersection graph G(R) of nontrivial left ideals of a ring R. We characterize the rings R for which the graph G(R) is connected and obtain several necessary and sufficient conditions on a ring R such that G(R) is complete. For a commutative ring R with identity, we show that G(R) is complete if and only if G(R[x]) is also so. In particular, we determine the values of n for which is connected, complete, bipartite, planar or has a cycle. Next, we characterize finite graphs which arise as the intersection graphs of and determine the set of all non-isomorphic graphs of for a given number of vertices. We also determine the values of n for which the graph of is Eulerian and Hamiltonian.  相似文献   

13.
14.
Brualdi and Shanny [R.A. Brualdi, R.F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981) 307-314], Clark [L. Clark, On hamitonian line graphs, J. Graph Theory 8 (1984) 303-307] and Veldman [H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229-239] gave minimum degree conditions of a line graph guaranteeing the line graph to be hamiltonian. In this paper, we investigate the similar conditions guaranteeing a line graph to be traceable. In particular, we show the following result: let G be a simple graph of order n and L(G) its line graph. If n is sufficiently large and, either ; or and G is almost bridgeless, then L(G) is traceable. As a byproduct, we also show that every 2-edge-connected triangle-free simple graph with order at most 9 has a spanning trail. These results are all best possible.  相似文献   

15.
The excess of a graph G is defined as the minimum number of edges that must be deleted from G in order to get a forest. We prove that every graph with excess at most k has chromatic number at most and that this bound is tight. Moreover, we prove that the oriented chromatic number of any graph with excess k is at most k+3, except for graphs having excess 1 and containing a directed cycle on 5 vertices which have oriented chromatic number 5. This bound is tight for k?4.  相似文献   

16.
First studied by Brodal and Fagerberg [G.S. Brodal, R. Fagerberg, Dynamic representation of sparse graphs, in: Algorithms and Data Structures, Proceedings of the 6th International Workshop, Vancouver, Canada, in: Lecture Notes in Computer Science, vol. 1663, Springer-Verlag, 1999], a dynamic adjacency labelling scheme labels the vertices of a graph so that the adjacency of two vertices can be deduced from their labels. The scheme is dynamic in the sense that only a small adjustment must be made to the vertex labels when a small change is made to the graph.Using a centralized dynamic representation of Hell, Shamir and Sharan [P. Hell, R. Shamir, R. Sharan, A fully dynamic algorithm for recognizing and representing proper interval graphs, SIAM Journal on Computing 31 (1) (2001) 289-305], we develop a bit/label dynamic adjacency labelling scheme for proper interval graphs. Our fully dynamic scheme handles vertex deletion/addition and edge deletion/addition in time. Furthermore, our dynamic scheme is error-detecting, as it recognizes when the new graph is not a proper interval graph.  相似文献   

17.
In this paper, we study different classes of intersection graphs of maximal hypercubes of median graphs. For a median graph G and k≥0, the intersection graph Qk(G) is defined as the graph whose vertices are maximal hypercubes (by inclusion) in G, and two vertices Hx and Hy in Qk(G) are adjacent whenever the intersection HxHy contains a subgraph isomorphic to Qk. Characterizations of clique-graphs in terms of these intersection concepts when k>0, are presented. Furthermore, we introduce the so-called maximal 2-intersection graph of maximal hypercubes of a median graph G, denoted , whose vertices are maximal hypercubes of G, and two vertices are adjacent if the intersection of the corresponding hypercubes is not a proper subcube of some intersection of two maximal hypercubes. We show that a graph H is diamond-free if and only if there exists a median graph G such that H is isomorphic to . We also study convergence of median graphs to the one-vertex graph with respect to all these operations.  相似文献   

18.
A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian path. We prove that . We also establish several results related to special classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We prove that . Let h2(n) denote the largest number such that when we remove an arbitrary star with at most h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show that h2(n)=⌈n/2⌉-1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph will have a noncrossing Hamiltonian path.  相似文献   

19.
20.
Let denote the graph obtained by attaching m pendent edges to a vertex of complete graph Kn-m, and Un,p the graph obtained by attaching n-p pendent edges to a vertex of Cp. In this paper, we first prove that the graph and its complement are determined by their adjacency spectra, and by their Laplacian spectra. Then we prove that Un,p is determined by its Laplacian spectrum, as well as its adjacency spectrum if p is odd, and find all its cospectral graphs for Un,4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号