首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
假设G是一个1-可扩图.G的1-因子覆盖是G的某些1-因子的集合M使得∪M∈M M=F(G).1-因子数目最小的1.因子覆盖称为excessive factorization.一个excessive factorization中的1.因子数目称为图G的excessive index,记为x:(G).本文我们基于G的耳朵分解和E(C)的依赖关系给出了X'e(G)的上界.对任意正整数k≥3,我们构造出一个图G使得A(G)=3而X'e(G)=k.进而,我们考虑了乘积图的excessive index.  相似文献   

2.
In this paper, we prove that the Kneser graphs defined on a ground set of n elements, where n is even, have their circular chromatic numbers equal to their chromatic numbers. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 257–261, 2005  相似文献   

3.
4.
The acyclic matching number of a graph G is the largest size of an acyclic matching in G, that is, a matching M in G such that the subgraph of G induced by the vertices incident to edges in M is a forest. We show that the acyclic matching number of a connected subcubic graph G with m edges is at least m6 except for two graphs of order 5 and 6.  相似文献   

5.
Given a connected graphG, we say that a setC ?V(G) is convex inG if, for every pair of verticesx, y ∈ C, the vertex set of everyx-y geodesic inG is contained inC. The convexity number ofG is the cardinality of a maximal proper convex set inG. In this paper, we show that every pairk, n of integers with 2 ≤k ≤ n?1 is realizable as the convexity number and order, respectively, of some connected triangle-free graph, and give a lower bound for the convexity number ofk-regular graphs of ordern withn>k+1.  相似文献   

6.
The class of planar graphs has unbounded treewidth, since the k×k grid, kN, is planar and has treewidth k. So, it is of interest to determine subclasses of planar graphs which have bounded treewidth. In this paper, we show that if G is an even-hole-free planar graph, then it does not contain a 9×9 grid minor. As a result, we have that even-hole-free planar graphs have treewidth at most 49.  相似文献   

7.
In 1968, Vizing conjectured that if G is a Δ‐critical graph with n vertices, then α(G)≤n/2, where α(G) is the independence number of G. In this paper, we apply Vizing and Vizing‐like adjacency lemmas to this problem and prove that α(G)<(((5Δ?6)n)/(8Δ?6))<5n/8 if Δ≥6. © 2010 Wiley Periodicals, Inc. J Graph Theory 68: 202‐212, 2011  相似文献   

8.
一类连通无三角形图线图的共色数的下界   总被引:4,自引:0,他引:4  
Erd(o)s,Gimbel and Straight (1990) conjectured that if ω(G)<5 and z(G)>3,then z(G)≥χ(G)-2. But by using the concept of edge cochromatic number it is proved that if G is the line graph of a connected triangle-free graph with ω(G)<5 and G≠K4, then z(G)≥χ(G)-2.  相似文献   

9.
10.
The total chromatic number χT(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident elements receive the same color. The Total Coloring Conjecture(TCC) states that for every simple graph G, χT(G)≤Δ(G)+2. In this paper, we show that χT(G)=Δ(G)+1 for all pseudo-Halin graphs with Δ(G)=4 and 5.  相似文献   

11.
A graph G of order p is k-factor-critical,where p and k are positive integers with the same parity, if the deletion of any set of k vertices results in a graph with a perfect matching. G is called maximal non-k-factor-critical if G is not k-factor-critical but G+e is k-factor-critical for every missing edge eE(G). A connected graph G with a perfect matching on 2n vertices is k-extendable, for 1?k?n-1, if for every matching M of size k in G there is a perfect matching in G containing all edges of M. G is called maximal non-k-extendable if G is not k-extendable but G+e is k-extendable for every missing edge eE(G) . A connected bipartite graph G with a bipartitioning set (X,Y) such that |X|=|Y|=n is maximal non-k-extendable bipartite if G is not k-extendable but G+xy is k-extendable for any edge xyE(G) with xX and yY. A complete characterization of maximal non-k-factor-critical graphs, maximal non-k-extendable graphs and maximal non-k-extendable bipartite graphs is given.  相似文献   

12.
13.
Remarks on the bondage number of planar graphs   总被引:4,自引:0,他引:4  
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. In 1998, J.E. Dunbar, T.W. Haynes, U. Teschner, and L. Volkmann posed the conjecture b(G)Δ(G)+1 for every nontrivial connected planar graph G. Two years later, L. Kang and J. Yuan proved b(G)8 for every connected planar graph G, and therefore, they confirmed the conjecture for Δ(G)7. In this paper we show that this conjecture is valid for all connected planar graphs of girth g(G)4 and maximum degree Δ(G)5 as well as for all not 3-regular graphs of girth g(G)5. Some further related results and open problems are also presented.  相似文献   

14.
15.
Graph domination numbers and algorithms for finding them have been investigated for numerous classes of graphs, usually for graphs that have some kind of tree-like structure. By contrast, we study an infinite family of regular graphs, the generalized Petersen graphs G(n). We give two procedures that between them produce both upper and lower bounds for the (ordinary) domination number of G(n), and we conjecture that our upper bound ⌈3n/5⌉ is the exact domination number. To our knowledge this is one of the first classes of regular graphs for which such a procedure has been used to estimate the domination number.  相似文献   

16.
It is well known that almost every graph in the random space G(n, p) has chromatic number of order O(np/log(np)), but it is not clear how we can recognize such graphs without eventually computing the chromatic numbers, which is NP‐hard. The first goal of this article is to show that the above‐mentioned upper bound on the chromatic number can be guaranteed by simple degree conditions, which are satisfied by G(n, p) almost surely for most values of p. It turns out that the same conditions imply a similar bound for the choice number of a graph. The proof implies a polynomial coloring algorithm for the case p is not too small. Our result has several applications. It can be used to determine the right order of magnitude of the choice number of random graphs and hypergraphs. It also leads to a general bound on the choice number of locally sparse graphs and to several interesting facts about finite fields. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 201–226, 1999  相似文献   

17.
18.
We prove that, for a certain positive constant a and for an infinite set of values of n, the number of nonisomorphic triangular embeddings of the complete graph Kn is at least nan2. A similar lower bound is also given, for an infinite set of values of n, on the number of nonisomorphic triangular embeddings of the complete regular tripartite graph Kn,n,n.  相似文献   

19.
A 1‐factorization of a graph G is a collection of edge‐disjoint perfect matchings whose union is E(G). In this paper, we prove that for any ?>0, an (n,d,λ)‐graph G admits a 1‐factorization provided that n is even, C0dn?1 (where C0=C0(?) is a constant depending only on ?), and λd1??. In particular, since (as is well known) a typical random d‐regular graph Gn,d is such a graph, we obtain the existence of a 1‐factorization in a typical Gn,d for all C0dn?1, thereby extending to all possible values of d results obtained by Janson, and independently by Molloy, Robalewska, Robinson, and Wormald for fixed d. Moreover, we also obtain a lower bound for the number of distinct 1‐factorizations of such graphs G, which is better by a factor of 2nd/2 than the previously best known lower bounds, even in the simplest case where G is the complete graph.  相似文献   

20.
Given a set D of a cyclic group C, we study the chromatic number of the circulant graph G(C,D) whose vertex set is C, and there is an edge ij whenever ijD∪−D. For a fixed set D={a,b,c:a<b<c} of positive integers, we compute the chromatic number of circulant graphs G(ZN,D) for all N≥4bc. We also show that, if there is a total order of D such that the greatest common divisors of the initial segments form a decreasing sequence, then the chromatic number of G(Z,D) is at most 4. In particular, the chromatic number of a circulant graph on ZN with respect to a minimum generating set D is at most 4. The results are based on the study of the so-called regular chromatic number, an easier parameter to compute. The paper also surveys known results on the chromatic number of circulant graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号