首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
On stable cutsets in claw-free graphs and planar graphs   总被引:4,自引:0,他引:4  
A stable cutset in a connected graph is a stable set whose deletion disconnects the graph. Let K4 and K1,3 (claw) denote the complete (bipartite) graph on 4 and 1+3 vertices. It is NP-complete to decide whether a line graph (hence a claw-free graph) with maximum degree five or a K4-free graph admits a stable cutset. Here we describe algorithms deciding in polynomial time whether a claw-free graph with maximum degree at most four or whether a (claw, K4)-free graph admits a stable cutset. As a by-product we obtain that the stable cutset problem is polynomially solvable for claw-free planar graphs, and also for planar line graphs.Thus, the computational complexity of the stable cutset problem is completely determined for claw-free graphs with respect to degree constraint, and for claw-free planar graphs. Moreover, we prove that the stable cutset problem remains NP-complete for K4-free planar graphs with maximum degree five.  相似文献   

4.
5.
6.
We present a new graph composition that produces a graph G from a given graph H and a fixed graph B called gear and we study its polyhedral properties. This composition yields counterexamples to a conjecture on the facial structure of when G is claw-free.  相似文献   

7.
8.
9.
We show a construction that gives an infinite family of claw-free graphs of connectivity κ=2,3,4,5 with complete closure and without a cycle of a given fixed length. This construction disproves a conjecture by the first author, A. Saito and R.H. Schelp.  相似文献   

10.
11.
For an integer s0, a graph G is s-hamiltonian if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset S?V(G) with |S|s, G?S is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Ku?zel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjá?ek and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for s2, a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected. In this paper we prove the following.(i) For an integer s2, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s+2)-connected.(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.  相似文献   

12.
For a subgraph X of G, let αG3(X) be the maximum number of vertices of X that are pairwise distance at least three in G. In this paper, we prove three theorems. Let n be a positive integer, and let H be a subgraph of an n-connected claw-free graph G. We prove that if n2, then either H can be covered by a cycle in G, or there exists a cycle C in G such that αG3(H?V(C))αG3(H)?n. This result generalizes the result of Broersma and Lu that G has a cycle covering all the vertices of H if αG3(H)n. We also prove that if n1, then either H can be covered by a path in G, or there exists a path P in G such that αG3(H?V(P))αG3(H)?n?1. By using the second result, we prove the third result. For a tree T, a vertex of T with degree one is called a leaf of T. For an integer k2, a tree which has at most k leaves is called a k-ended tree. We prove that if αG3(H)n+k?1, then G has a k-ended tree covering all the vertices of H. This result gives a positive answer to the conjecture proposed by Kano et al. (2012).  相似文献   

13.
Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. In an earlier paper we characterized claw-free cubic graphs and derived a recurrence relation for Hn. Here we determine the asymptotic behavior of this sequence:
  相似文献   

14.
In this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n,6δ−15}, thereby generalizing several known results.  相似文献   

15.
In 1962, Erd?s proved that if a graph G with n vertices satisfies
e(G)>maxn?k2+k2,?(n+1)2?2+n?122,
where the minimum degree δ(G)k and 1k(n?1)2, then it is Hamiltonian. For n2k+1, let Enk=Kk(kK1+Kn?2k), where “” is the “join” operation. One can observe e(Enk)=n?k2+k2 and Enk is not Hamiltonian. As Enk contains induced claws for k2, a natural question is to characterize all 2-connected claw-free non-Hamiltonian graphs with the largest possible number of edges. We answer this question completely by proving a claw-free analog of Erd?s’ theorem. Moreover, as byproducts, we establish several tight spectral conditions for a 2-connected claw-free graph to be Hamiltonian. Similar results for the traceability of connected claw-free graphs are also obtained. Our tools include Ryjá?ek’s claw-free closure theory and Brousek’s characterization of minimal 2-connected claw-free non-Hamiltonian graphs.  相似文献   

16.
We prove that, apart from some well-known low-dimensional examples, any compact hyperbolic Coxeter polytope has a pair of disjoint facets. This is one of very few known general results concerning combinatorics of compact hyperbolic Coxeter polytopes. We also obtain a similar result for simple non-compact polytopes.  相似文献   

17.
A connected even [2,2s]-factor of a graph G is a connected factor with all vertices of degree i (i=2,4,…,2s), where s?1 is an integer. In this paper, we show that every supereulerian K1,s-free graph (s?2) contains a connected even [2,2s-2]-factor, hereby generalizing the result that every 4-connected claw-free graph has a connected [2,4]-factor by Broersma, Kriesell and Ryjacek.  相似文献   

18.
19.
In this paper, we prove that if a claw-free graph G with minimum degree δ?4 has no maximal clique of two vertices, then G has a 2-factor with at most (|G|-1)/4 components. This upper bound is best possible. Additionally, we give a family of claw-free graphs with minimum degree δ?4 in which every 2-factor contains more than n/δ components.  相似文献   

20.
MingChu Li 《Discrete Mathematics》2006,306(21):2682-2694
A known result obtained independently by Fan and Jung is that every 3-connected k-regular graph on n vertices contains a cycle of length at least min{3k,n}. This raises the question of how much can be said about the circumferences of 3-connected k-regular claw-free graphs. In this paper, we show that every 3-connected k-regular claw-free graph on n vertices contains a cycle of length at least min{6k-17,n}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号