首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Laplacian spectral radii of bicyclic graphs   总被引:1,自引:0,他引:1  
A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, we obtain the first four largest Laplacian spectral radii among all the graphs in the class B(n) (n≥7) together with the corresponding graphs.  相似文献   

2.
3.
A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend this ordering by determining the fifth to the ninth largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices.  相似文献   

4.
Ji-Ming Guo 《Discrete Mathematics》2008,308(24):6115-6131
In this paper, the first five sharp upper bounds on the spectral radii of unicyclic graphs with fixed matching number are presented. The first ten spectral radii over the class of unicyclic graphs on a given number of vertices and the first four spectral radii of unicyclic graphs with perfect matchings are also given, respectively.  相似文献   

5.
Let Δ(T) and μ(T) denote the maximum degree and the Laplacian spectral radius of a tree T, respectively. Let Tn be the set of trees on n vertices, and . In this paper, we determine the two trees which take the first two largest values of μ(T) of the trees T in when . And among the trees in , the tree which alone minimizes the Laplacian spectral radius is characterized. We also prove that for two trees T1 and T2 in , if Δ(T1)>Δ(T2) and , then μ(T1)>μ(T2). As an application of these results, we give a general approach about extending the known ordering of trees in Tn by their Laplacian spectral radii.  相似文献   

6.
The spectra of weighted graphs are given attention by some authors because the graphs in the design of networks and electronic circuits are usually weighted. In this short paper, we completely determine the spectra of weighted double stars. We also give the weighted double star that achieves the maximal spectral radius.  相似文献   

7.
In this paper, we give some results on Laplacian spectral radius of graphs with cut vertices, and as their applications, we also determine the unique graph with the largest Laplacian spectral radius among all unicyclic graphs with n vertices and diameter d, 3?d?n−3.  相似文献   

8.
On the Laplacian coefficients of bicyclic graphs   总被引:1,自引:0,他引:1  
Let G be a graph of order n and let be the characteristic polynomial of its Laplacian matrix. Generalizing the approach in [D. Stevanovi?, A. Ili?, On the Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 430 (2009) 2290-2300.] on graph transformations, we show that among all bicyclic graphs of order n, the kth coefficient ck is smallest when the graph is Bn (obtained from C4 by adding one edge connecting two non-adjacent vertices and adding n−4 pendent vertices attached to the vertex of degree 3).  相似文献   

9.
On the spectral radius of unicyclic graphs with fixed diameter   总被引:1,自引:0,他引:1  
  相似文献   

10.
Let π = (d 1, d 2, ..., d n ) and π′ = (d′ 1, d′ 2, ..., d′ n ) be two non-increasing degree sequences. We say π is majorizated by π′, denoted by ππ′, if and only if ππ′, Σ i=1 n d i = Σ i=1 n d′ i , and Σ i=1 j d i ≤ Σ i=1 j d′ i for all j = 1, 2, ..., n. Weuse C π to denote the class of connected graphs with degree sequence π. Let ρ(G) be the spectral radius, i.e., the largest eigenvalue of the adjacent matrix of G. In this paper, we extend the main results of [Liu, M. H., Liu, B. L., You, Z. F.: The majorization theorem of connected graphs. Linear Algebra Appl., 431(1), 553–557 (2009)] and [Bıyıkoğlu, T., Leydold, J.: Graphs with given degree sequence and maximal spectral radius. Electron. J. Combin., 15(1), R119 (2008)]. Moreover, we prove that if π and π′ are two different non-increasing degree sequences of unicyclic graphs with ππ′, G and G′ are the unicyclic graphs with the greatest spectral radii in C π and C′ π , respectively, then ρ(G) < ρ(G′).  相似文献   

11.
12.
13.
We determine the maximal Laplacian and signless Laplacian spectral radii for graphs with fixed number of vertices and domination number, and characterize the extremal graphs.  相似文献   

14.
We consider weighted graphs, where the edge weights are positive definite matrices. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. We obtain an upper bound on the spectral radius of the adjacency matrix and characterize graphs for which the bound is attained.  相似文献   

15.
Let us consider weighted graphs, where the weights of the edges are positive definite matrices. The eigenvalues of a weighted graph are the eigenvalues of its adjacency matrix and the spectral radius of a weighted graph is also the spectral radius of its adjacency matrix. In this paper, we obtain two upper bounds for the spectral radius of weighted graphs and compare with a known upper bound. We also characterize graphs for which the upper bounds are attained.  相似文献   

16.
In this paper characterizations of connected unicyclic and bicyclic graphs in terms of the degree sequence, as well as the graphs in these classes minimal with respect to the degree distance are given.  相似文献   

17.
18.
Let G be an n-vertex (n?3) simple graph embeddable on a surface of Euler genus γ (the number of crosscaps plus twice the number of handles). Denote by Δ the maximum degree of G. In this paper, we first present two upper bounds on the Laplacian spectral radius of G as follows:
(i)
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号