首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
病害胁迫下冬小麦冠层叶片色素含量高光谱遥感估测研究   总被引:25,自引:4,他引:21  
通过人工田间诱发小麦条锈病,在不同生育期测定染病冬小麦冠层光谱和相应叶片的色素含量。把冠层光谱数据、一阶微分数据与相应的叶片色素含量数据分别进行相关分析,采用单变量线性和非线性回归技术,选取部分样本建立小麦的色素含量估测模型,并利用其余的样本对模型进行检验,结果表明绿边内一阶微分总和(SDg)与红边内一阶微分总和(SDr) 的归一化值为变量的线性模型是估测色素含量的最佳模型,其估测叶绿素a,叶绿素b和胡萝卜素含量的相对误差分别为17.0%,16.3%和12.4%。该研究表明可用高光谱信息估测冠层叶片色素含量,且估测精度较高。文章的研究结果对利用高光谱遥感监测农作物长势以及病害影响都具有实际应用价值。  相似文献   

2.
用高光谱微分指数监测冬小麦病害的研究   总被引:11,自引:0,他引:11  
工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱、生理生化参数以及相应的病情指数。 对小麦冠层一阶微分光谱进行分析,结果表明随病情指数增大,一阶微分光谱在绿边(500~560 nm)内逐渐增大,在红边(680~760 nm)内逐渐降低。红边核心区(725~735 nm)内一阶微分总和(SDr′)与绿边核心区(520~530 nm)内一阶微分总和(SDg′)的比值,与病情指数具有极显著线性负相关性,相关系数r2=0.921(n=28),且能够在症状出现前12 d识别出健康作物与病害作物。因此,微分植被指数SDr′/SDg′能够监测并反演作物病害信息。研究结果对利用高光谱遥感获取作物病害信息具有实际应用价值,对提高粮食产量、保证粮食安全具有重要意义。  相似文献   

3.
通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(disease index,DI)。利用主成分分析法提取冠层光谱350~1 350 nm范围内的前5个主成分(principal components,PCs),以及一阶微分光谱在蓝边(490~530 nm),黄边(550~582 nm)和红边(630~673 nm)内的前3个PCs,并利用逐步回归法建立反演模型,其结果分别与植被指数经验模型进行对比,结果表明:以一阶微分PCs为变量的模型精度优于其他模型,其RMSE为7.65,相对误差为15.59%。通过对预测值与实测值对比发现,以微分指数SDr′/SDg′为变量的模型适合监测冬小麦早期病情,而以一阶微分PCs为变量的模型特别适合监测冬小麦条锈病病情较严重期。研究结果对利用高光谱遥感监测与评估小麦病害程度具有实际应用价值。  相似文献   

4.
高光谱遥感模型对亚洲小车蝗危害程度研究   总被引:3,自引:0,他引:3  
对内蒙古自治区锡林郭勒盟亚洲小车蝗危害进行了高光谱遥感监测,利用地面高光谱数据,分析和比较了正常羊草和亚洲小车蝗危害羊草冠层反射光谱和高光谱特征参数的差异,建立了高光谱特征参数与羊草叶面积指数的关系模型。结果表明:LAI和3个高光谱参数有极显著相关性,其中以红边峰值区(620~760 nm )一阶微分总和与蓝边峰值区(430~470 nm )一阶微分总和的比值为变量的虫害光谱指数(DI)模型精度最高,最适于反映研究区蝗虫的危害程度。从模型可以看出,DI介于51.57~79.83,蝗虫轻度发生;DI小于51.57,蝗虫严重发生。模型的预测值与实际值相关系数为0.948,平均相对误差为3.928%,表明模型的预测效果较好。  相似文献   

5.
大斑病是一种对玉米危害严重的病害,迫切的需要一种可以快速了解玉米大斑病病情的方法。以无人机遥感作为新的技术平台,探究玉米冠层受到大斑病胁迫时的光谱响应情况,并利用无人机高光谱成像技术对大斑病病情进行监测和可视化研究。采集玉米多生育期(抽雄期、灌浆期、完熟期)冠层500~900 nm的高光谱影像,根据采集影像的原始光谱和一阶微分光谱特征,提取出12个大斑病敏感波段位置, 12个波段位置分别为:514, 532, 553, 680, 714, 728, 756和818 nm,近红外、红、绿波段及红边位置。根据前人提出的植物病害监测参数结合提取的敏感波段位置,构建13组针对玉米冠层大斑病的监测光谱参数,研究不同波段对大斑病病情指数(DI)值的敏感性,并构建玉米冠层大斑病的监测模型,验证利用无人机遥感监测大斑病DI值的精度及稳定性。结果表明:随病情指数增加,一阶微分光谱图出现典型的"蓝移"现象,病害冠层DI值与红光(680~714 nm)和近红外(770~818 nm)的反射率及一阶微分光谱图的红边位置(680~756 nm)相关性更显著,与绿光波段相关性较低。在13组监测光谱参数中, 8组与建模样点冠层大斑病实测DI值达到极显著相关水平,决定系数(R~2)均达到0.8以上,选取各生育期R~2达到0.8以上的光谱参数用于玉米冠层大斑病监测模型的构建,将检验样本的实测值与监测模型的预测值进行相关性分析。检验表明,在抽雄期,模型DI-NDVI(SD_(λ_i), SD_(λ_j))的回归斜率(0.829 3)和决定系数(R~2=0.842 7)都最接近1,均方根误差(RMSE=4.59)和相对误差(RE=12.3)更小,说明模型DI-NDVI(SD_(λ_i), SD_(λ_j))的预测能力和精度更高。各生育期对应模型均取得较好监测效果,说明本研究利用无人机遥感对植物病害监测具有指导意义,对精准农业的发展具有一定的借鉴价值。  相似文献   

6.
利用高光谱红边与黄边位置距离识别小麦条锈病   总被引:10,自引:0,他引:10  
研究的目的是利用高光谱遥感尽可能早地识别出健康与遭受条锈病胁迫的小麦。通过人工田间诱发不同等级条锈病,在不同生育期测定感染不同严重程度条锈病的冬小麦冠层光谱及病情指数(disease index,DI)。对测定的光谱进行平滑并计算一阶微分值,并用两种方法分别提取光谱红边位置(red edge position,REP)与黄边位置(yellow edge position,YEP):(1)一阶微分最大值法;(2)Cho and Skidmore方法。研究表明随着病情严重度的增加,REP逐渐向短波方向移动,YEP逐渐向长波方向移动,而REP-YEP则迅速的减小。分别对比分析了REP,YEP以及REP-YEP预测DI的能力,结果表明,以REP-YEP为变量的模型预测DI的精度最好,模型估测绝对误差(RMSE)仅为6.22,相对误差(relative error,RE)为14.3%,且能够提前12 d识别出健康与病害胁迫的小麦。该研究不仅可为将来利用高光谱遥感大面积监测小麦病害提供理论与技术支持,而且对精准农业的实施也具有重要意义与实际应用价值。  相似文献   

7.
用冠层光谱比值指数反演条锈病胁迫下的小麦含水量   总被引:2,自引:0,他引:2  
通过高光谱遥感估测条锈病胁迫下的小麦冠层水分含量。通过人工田间诱发不同等级小麦条锈病,在不同生育期测定感染不同严重程度条锈病的冬小麦冠层光谱、相对含水量(relative water content,RWC) 以及调查小麦条锈病病情指数(disease index,DI)。研究发现随着小麦RWC的减少,冠层光谱反射率在近红外区域(900~1 300 nm)逐渐降低,而在短波红外区域(1 300~2 500 nm)逐渐增大,且RWC与DI间具有强负相关性。对冠层光谱进行平滑处理,利用冠层光谱近红外与短波红外水分敏感波段构建比值指数,然后建立以比值指数为变量的反演RWC线性模型,并分析对比各模型反演RWC的精度以及稳定性,结果发现比值指数R1 300/R1 200反演RWC的精度及稳定性(R2=0.63)都优于其他指数,其线性模型反演绝对误差为3.43,相对误差(relative error,RE)为4.78%。该研究结果不仅为判别小麦病害提供辅助信息,而且也为未来利用高光谱图像反演植物含水量提供理论与方法支持。  相似文献   

8.
冬小麦条锈病严重度不同估算方法对比研究   总被引:5,自引:0,他引:5  
为了提高遥感监测小麦条锈病病害严重度的准确性,寻找小麦病害的较优反演模型,在国家精准农业示范研究基地基于野外定位调查小麦病情指数及冠层光谱数据,利用与小麦病害发生呈显著关系且有效反映植被生理生长状况的7种高光谱植被指数,尝试分别采用PLS(偏最小二乘回归)、BP神经网络和植被指数经验法三种方法建立小麦条锈病病情反演模型,并进行比较分析。结果表明:三种方法病害严重度预测值与实测值间的R2分别为0.936,0.918,0.767。采用偏最小二乘回归方法监测小麦病情指数效果更好,为探寻不同种类植被指数对模型的贡献,尝试用代表植被绿度的NDVI, GNDVI, MSR和代表水分含量的NDWI和MSI植被指数分别作为PLS模型的输入变量,建立病害反演模型。结果表明:小麦条锈病中,叶片叶绿素含量的变化比冠层水含量的变化对病情指数更为敏感,对病害有更好的解释作用。然而,两模型精度都低于七种植被指数全部参与时的预测结果,即输入变量中采用多种植被指数比用单类指数模拟准确度高。  相似文献   

9.
分析炭疽病侵染后油茶冠层的可见-近红外光谱特征,探索建立病害胁迫下油茶冠层叶片叶绿素含量的预测模型。通过实地调查病情指数,获取不同病害程度的油茶冠层叶片光谱数据及其叶绿素含量,并对光谱数据进行了一阶微分与滑动平均滤波相结合的预处理,再通过光谱数据重采样,提取敏感波段建立了叶绿素含量的BP神经网络预测模型。结果表明:(1)随着病情的加重,油茶冠层光谱可见光区域的反射峰和吸收谷逐渐消失;红光到近红外陡峭的红边被逐渐拉平;在近红外区域,健康油茶的光谱反射率明显大于感病油茶的光谱反射率。(2)微分光谱484~512,533~565,586~606和672~724nm四个波段是叶绿素吸收和反射的敏感波段。(3)以敏感波段为输入变量建立的BP神经网络模型,其计算出的预测值与观测值之间的相关系数r和均方根误差分别为0.992 1和0.045 8。因此,利用可见-近红外光谱技术预测炭疽病侵染后油茶叶片叶绿素含量是可行的。  相似文献   

10.
病害胁迫下棉花叶片色素含量高光谱遥感估测研究   总被引:11,自引:0,他引:11  
通过小区和大田同步调查棉花黄萎病,在不同生育期测定病叶光谱及其色素含量。将病叶光谱反射率、一阶微分及相应的特征参数与色素含量进行相关分析,建立病叶色素含量估测模型并检验。结果表明:病叶叶绿素a,b及a+b含量可见光反射率、与一阶微分光谱在蓝边、黄边和红边处与除红边振幅(Dr)外的其他光谱特征参数间均达极显著相关。转换叶绿素吸收反射指数(TCARI)和新建归一化植被指数(NDVI[702, 758])对叶绿素a, b及a+b含量的估测精度最高,相对误差均小于1.3%。考虑到NDVI[702, 758]建立的模型更实用,可做为病叶叶绿素a, b和a+b含量的最佳估测模型。研究结果对高光谱信息定量估测病害棉叶色素含量,对利用高光谱监测棉花长势及病害影响评价均具有较高的实用价值。  相似文献   

11.
应用混合品种控制小麦条锈病在国内外日益受到重视,通过采集田间不同品种混合小麦条锈病各级病情梯度的高光谱遥感数据,将光谱数据与条锈病病情数据进行相关性分析,利用4个光谱参数构建其与病情指数的回归模型。结果表明,不同小麦品种组合在不同的病情指数情况下,其冠层光谱信息都表现了一致的变化规律;冠层反射率在可见光区与病情指数为正相关,而在近红外区则达到了显著的负相关;利用690与850 nm处的反射率、SDr、NDVI以及RVI与病情指数构建的回归模型拟合效果较好。研究表明利用高光谱反演条锈病病情指数是可行的,并且小麦不同品种对反演效果影响不大。  相似文献   

12.
用高光谱微分指数估测条锈病胁迫下小麦冠层叶绿素密度   总被引:13,自引:0,他引:13  
通过人工田间诱发不同等级条锈病,在不同生育期测定感染不同严重程度条锈病的冬小麦冠层光谱与冠层叶绿素密度(canopy chlorophyll density,CCD)。把CCD与高光谱指数进行相关性分析,选取相关系数大于0.7的指数构建反演模型,并对模型进行检验,结果表明微分指数(D750-D550)/(D750+D550)反演精度以及稳定性最好,其次是微分指数(D725-D702)/(D725+D702)。对上述两个微分指数分别进行饱和度分析,发现当CCD大于12μg.cm-2时微分指数(D750-D550)/(D750+D550)易达到饱和,因此当CCD小于12μg.cm-2时,微分指数(D750-D550)/(D750+D550)反演CCD结果较好;但当CCD大于12μg.cm-2时,利用微分指数(D725-D702)/(D725+D702)反演CCD较好,该指数不易达到饱和状态。由于CCD与小麦病情指数(diseaseindex,DI)之间存在极显著负相关性,利用高光谱遥感精确估测小麦冠层CCD,不仅可以帮助判断作物的长势,而且可为识别小麦病害提供辅助信息。因此,该研究对于农业防灾减灾也具有重要现实意义。  相似文献   

13.
基于高光谱特征与人工神经网络模型对土壤含水量估算   总被引:3,自引:0,他引:3  
土壤含水量(θ)是影响作物生长和作物产量的主要因素之一。旨在评估基于光谱特征参数的各种回归模型估算土壤含水量的精度,并比较人工神经网络(BP-ANN)和光谱特征参数模型的性能。2014年在室内获取砂土和壤土的土壤含水量和光谱反射率数据。结果表明:(1)当砂土容重为1.40 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和估算θ达到极显著水平(R2超过0.90);容重为1.50 g·cm-3时,用蓝边最大反射率和900~970 nm反射率总和估算θ相关性最好(超过0.70);容重为1.60 g·cm-3时,780~970 nm反射率总和与560~760 nm归一化吸收深度的R2均超过0.90,达到极显著水平;容重为1.70 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和的R2为0.88,呈极显著水平。(2)当土壤类型为壤土时,用900~970 nm最大反射率和900~970 nm反射率总和估算θ相关性最好。(3)蓝边反射率总和(R2=0.26和RMSE=0.09 m3·m-3)和780~970 nm吸收深度(R2=0.32和RMSE=0.10 m3·m-3)估算砂土的含水量相关性最好。在估算壤土的含水量时,900~970 nm最大反射率(R2=0.92和RMSE=0.05 m3·m-3)与900~970 nm反射率总和估算模型的精度最高(R2=0. 92和RMSE=0.04 m3·m-3)。(4)用人工神经网络模型能够更好地估算两种土壤的含水量(R2=0.87和RMSE=0.05 m3·m-3)。因此,人工神经网络模型对θ估算具有巨大的潜力。  相似文献   

14.
为探究土壤表层湿度影响下冬小麦冠层光谱反射率响应晚霜冻害的特征,并检验敏感光谱波段预测小麦产量变化的能力,于2013和2014年小麦拔节期,分别设置了表层土壤含水量为10%(干)、10%~20%(中)和20%(湿)的三个湿度处理的冻前试验,并在低温室内进行降温处理。分析了不同土壤表层湿度下受冻冬小麦的穗数、穗粒数、千粒重、单株产量、冠层光谱反射率及其一阶微分值的差异,对冬小麦冻害产量变化率和高光谱特征参量进行了相关分析和一元线性拟合。结果表明:冬小麦穗粒数和单株产量总体上均随土壤表层湿度的降低而呈减少态势,在土壤表层干处理条件下冻害对冬小麦产量造成的影响最为显著(p0.05);在绿峰(523nm附近)、黄边(571nm附近)、红边(732nm附近)和近红外台的两个水分吸收带(952和1 145nm附近),干+冻害处理冬小麦冠层反射率的一阶微分值与中+冻害、湿+冻害处理的差值明显;剥离了土壤表层湿度对光谱的影响后,冬小麦冠层反射率一阶微分差值在以570nm为中心的黄边区域和以710nm为中心的红边区域对干、中和湿梯度处理下晚霜冻害响应的差异明显;两年试验中的黄边面积(SDy)和570nm处一阶微分值(d570)均与冻害产量变化率达到显著正相关(p0.05),说明黄边区域的高光谱特征参量可用于检测土壤表层湿度影响下的冬小麦晚霜冻害程度。本研究可为土壤表层湿度和晚霜冻害叠加影响下冬小麦产量变化预测方法的探讨提供参考。  相似文献   

15.
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4 Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数--归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26 d起800~1 330 nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700 nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368 nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33 d最高。建议用400~700和760~1 368 nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750 nm区间出现两个“峰”,通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740 nm区间冠层一阶微分光谱值在开花期最高,开花后10 d的一阶微分光谱值最低。在开花期至开花后10 d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33 d N3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33 d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33 d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数--归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号