首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The hydroxyl radical (OH radical) formation rates from the photo-Fenton reaction in river and rain water samples were determined by using deferoxamine mesylate (DFOM), which makes a stable and strong complex with Fe(III), resulting in a suppression of the photo-Fenton reaction. The difference between the OH radical formation rates with and without added DFOM denotes the rate from the photo-Fenton reaction. The photoformation rates from the photo-Fenton reaction were in the range of 0.7 - 45.8 x 10(-12) and 2.7 - 32.3 x 10(-12) M s(-1) in river and rain water samples, respectively. A strong positive correlation between the OH radical formation rate from the photo-Fenton reaction and the amount of fluorescent matter in river water suggests that fluorescent matter, such as humic substances, plays an important role in the photo-Fenton reaction. In rain water, direct photolysis of hydrogen peroxide was an important source of OH radicals as well as the photo-Fenton reaction. The contributions of the photo-Fenton reaction to the OH radical photoformation rates in river and rain water samples were in the ranges of 2 - 29 and 5 - 38%, respectively. Taking into account the photo-Fenton reaction, 33 - 110 (mean: 80) and 42 - 110 (mean: 84)% of OH radical sources in river and rain water samples, respectively, collected in Hiroshima prefecture were elucidated.  相似文献   

2.
Photoformation rates and scavenging rate constants of hydroxyl radicals (OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between OH and the benzene added to the water sample was determined to quantify the OH formation rate. The rate constants of OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 × 10−13 M s−1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of OH in commercial drinking water and the major source and sink of OH were identified as nitrate and bicarbonate ions, respectively.  相似文献   

3.
Because of nitrite hydrogenperoxide formation irradiation treatment alone is not apt for groundwater remediation with regard to utilization as drinking water. Addition of ozone to the water before irradiation eliminates the nitrite and hydrogen peroxide as well and causes the reducing species of water radiolysis to be converted into OH radicals. The resulting advanced oxidation process is the only one which is based on two OH radical sources: water radiolysis and ozone decomposition. The basic chemistry and a 3 m3 prototype installation is described.  相似文献   

4.
Based on literature data of sunlight spectrum, photolysis quantum yields, and absorption spectra, the relative role of nitrite and nitrate as *OH sources in surface waters was assessed, and its dependence on the season and the depth of the water column studied. In the majority of surface water samples (river, lake and seawater) nitrite is expected to play a more important role as *OH source compared to nitrate, in spite of the usually lower [NO2(-)] values. Interestingly, under the hypothesis of a constant ratio of the concentrations of nitrate and nitrite (to be corrected later on for the actual concentration ratio in a given sample), the relative role of nitrite compared to nitrate would be minimum in summer, at noon, in the surface layer of natural waters. Any decrease in the sunlight intensity that can be experienced in the natural environment (different season than summer, water column absorption, time of the day other than the solar noon), with its associated influence on the sunlight spectrum, would increase the relative role of nitrite compared to nitrate.  相似文献   

5.
Tyrosine nitration, often observed during neurodegenerative disorders under nitrative stress, is usually considered to be induced chemically either by nitric oxide and oxygen forming nitrogen dioxide or by the decomposition of peroxynitrite. It can also be induced enzymatically by peroxidases or superoxide dismutases in the presence of both hydrogen peroxide and nitrite forming nitrogen dioxide and/or peroxynitrite. In this study, the role of cupric ions for catalyzing tyrosine nitration in the presence of hydrogen peroxide and nitrite, by a chemical mechanism rather similar to enzymatic pathways where nitrite is oxidized to form nitrogen dioxide, was investigated by development of a microreactor also capable of acting as an emitter for electrospray ionization mass spectrometry analysis. Indeed, cupric ions and peptide-cupric ion complexes are found to be excellent Fenton catalysts, even better than Fe(III) or heme, for the formation of (?)OH radicals and/or copper(II)-bound (?)OH radicals from hydrogen peroxide. These radicals are efficiently scavenged by nitrite anions to form (?)NO(2) and by tyrosine to form tyrosine radicals, leading to tyrosine nitration in polypeptides. We also show that cupric ions can catalyze tyrosine nitration from nitric oxide, oxygen, and hydrogen peroxide as the formation of tyrosine radicals is increased in the presence of diffusible and/or copper(II) bound hydroxyl radicals. This study shows that copper has a polyvalent role in the processes of tyrosine nitration.  相似文献   

6.
The gas-phase reaction of OH radicals with benzene has been studied in a flow tube operated at 295 +/- 2 K and 950 mbar of synthetic air or O2. Ozonolysis of tetramethylethylene (dark reaction) with a measured OH radical yield of 0.92 +/- 0.08 or photolysis of methyl nitrite in the presence of NO served as the OH sources. For investigations in the presence of NOx, the conditions were chosen so that more than 95% of the OH/benzene adduct reacted with O2 even for the highest NO2 concentration occurring in the experiment. In the absence of NOx, a phenol yield from the reaction of OH radicals with benzene of 0.61 +/- 0.07 was measured by means of long-path FT-IR and UV spectroscopy over a wide range of experimental conditions. This yield was confirmed by measurements performed in the presence of NOx. Detected carbonyls were glyoxal, cis-butenedial and trans-butenedial with formation yields of 0.29 +/- 0.10, 0.08 +/- 0.03 and 0.023 +/- 0.007, respectively, measured in synthetic air and in the presence of NOx. There was no significant difference in the product yields applying both experimental approaches for OH generation (dark reaction or photolysis). Nitrobenzene and o-nitrophenol were detected in traces. The yield of nitrobenzene increased with increasing NOx resulting in a maximum formation yield of 0.007. The detected products in the presence of NOx account for approximately 78% of the reacted carbon. Butenedial yields from benzene degradation are reported for the first time. In the absence of NOx, glyoxal, cis-butenedial and trans-butenedial were also detected, but with distinctly lower yields compared to the experiments with NOx.  相似文献   

7.
Possible channels of ozone transformations in the atmosphere in the presence of isolated water molecules or water associates were studied by quantum-chemical calculations of model systems comprising ozone and water molecules. The calculations were performed using the multiconfigurational self-consistent field approach in the complete active space, including perturbation theory corrections. The electronic excitation of the ozone molecule coordinated to a water associate should result in the formation of a strongly excited hydrogen peroxide molecule, which easily decomposes to two OH radicals. An alternative, less probable, transformation channel involves the formation of the HO2 radical and atomic hydrogen. The interaction of the ozone molecule with the OH radical in turn results in the formation of the HO2 radical and oxygen molecule. The MP2 variant of the one-configuration Möller-Plesset perturbation theory was shown to be inapplicable to describing the HO4 system.  相似文献   

8.
We describe capillary zone electrophoresis (CZE) for the simultaneous determination of bromide, nitrite and nitrate ions in seawater. Artificial seawater was adopted as the carrier solution to eliminate the interference of high concentrations of salts in seawater. The artificial seawater was free from bromide ion to enable the determination of bromide ion in a sample solution. For the purpose of reversing the electroosmotic flow (EOF), 3 mM cetyltrimethylammonium chloride (CTAC) was added to the carrier solution. A 100 microm ID (inside diameter) capillary was used to extend the optical path length. The limits of detection (LODs) for bromide, nitrite, and nitrate ions were 0.46, 0.072, and 0.042 mg/L (as nitrogen), respectively. The LODs were obtained at a signal to noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area for these ions were 1.1, 1.5, and 0.97%. The RSDs of migration time for these ions were 0.61, 0.69, and 0.66%. Artificial seawater samples containing various concentrations of bromide, nitrite, and nitrate ions were analyzed by the method. The error was less than +/-12% even if the concentration ratio of bromide ion to nitrite or nitrate ion was 20-240. The proposed method was applied to the determination of bromide, nitrite, and nitrate ions in seawater samples taken from the surface and the seabed. These ions in other environmental waters such as river water and rainwater samples were also determined by ion chromatography (IC) as well as this method.  相似文献   

9.
A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in biphenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.  相似文献   

10.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

11.
The objective of this research effort is to develop a more comprehensive understanding of how molecules get degraded in plasma during an electrical discharge in water. The study correlates the intensity of hydroxyl (OH) radicals in the plasma and physicochemical properties of aqueous solutions of methanol, ethanol, acetonitrile, acetone, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), phenol, hydroquinone, caffeine, and bisphenol A (BPA). To determine the tendency of the used compounds to penetrate the plasma, their vapor pressures, Henry’s constants, aqueous solubilities, reaction rate constants with OH radicals, and octanol–water partition coefficients are compared and correlated with plasma spectroscopic and hydrogen peroxide (H2O2) measurements. OH radicals are precursors to the formation of hydrogen peroxide and any compound that diffuses into the plasma will react with and lower the intensity of OH radicals and therefore the concentration of hydrogen peroxide in the bulk liquid. Optical emission spectroscopy (OES) reveals that all the used compounds diffuse inside the plasma channel regardless of their vapor pressure where they get oxidized (primarily by OH radicals) and thermally degraded. Results also indicate that hydrophobicity (i.e., octanol–water partition coefficient) is the most important property that determines a compound’s tendency to diffuse inside the plasma channel; hydrophobic compounds readily penetrate the plasma whereas hydrophilic compounds tend to stay in the bulk liquid. The rate of formation of hydrogen peroxide is independent of the type of the compound present in the bulk liquid which confirms that this molecule is formed at the plasma interface.  相似文献   

12.
Nitrate and Nitrite Ultraviolet Actinometers   总被引:1,自引:0,他引:1  
Abstract We developed nitrate and nitrite actinometers to determine radiant fluxes from 290 to 410 nm. These actinometers are based on the reaction of the photochemically generated OH radical with benzoic acid to form salicylic acid (SA) and p-hydroxybenzoic acid (pHBA). Actinom-eter development included determination of the temperature and wavelength dependence of the quantum yield for formation of SA and pHBA from nitrate and nitrite photolysis in air-saturated solutions. Quantum yields (at 25°C) for SA production from nitrate photolysis ranged from 0.00146 to 0.00418 between 290 and 350 nm, and from 0.00185 to 0.00633 for nitrite photolysis between 290 and 405 nm. The quantum yields for SA production were approximately 50–60% greater than quantum yields for pHBA production from nitrate and nitrite photolysis. For both actinometers, SA and pHBA formation was temperature dependent, increasing by approximately a factor of 2.2 from 0 to 35°C. Activation energies for SA formation varied with wavelength, ranging from 14.7 to 16.5 kj mol -1 between 290 and 330 nm for the nitrate actinometer and 12.3 to 17.8 kj mol-1 between 310 and 390 nm for the nitrite actinometer. Activation energies for pHBA formation were 2–11% higher. Wavelength-dependent changes in the quantum yield and activation energy for SA and pHBA formation from nitrate photolysis suggest multiple electronic transitions for nitrate from 290 to 350 nm. Quantum yields for OH radical formation from nitrate and nitrite photolyses were estimated from SA and pHBA quantum yields at 25°C. Wavelength-dependent OH quantum yields ranged from 0.007 to 0.014 for nitrate photolysis between 290 and 330 nm and from 0.024 to 0.078 for nitrite photolysis between 298 and 390 nm. The nitrate and nitrite actinometers can maintain initial rate conditions for hours, are insensitive to laboratory lighting, easy to use and extremely sensitive; the minimum radiant energy that can be detected in our irradiation system is approximately 10-9 einsteins.  相似文献   

13.
We oxidized methanol in supercritical water at 500 degrees C to explore the influence of the water concentration (or density) on the kinetics. The rate increased as the water concentration increased from 1.8 to 5.7 mol/L. This effect of water density on the kinetics observed experimentally was quantitatively reproduced by a previously validated mechanism-based, detailed chemical kinetics model. In this model, reactions of OH radicals with methanol were the fastest methanol removal steps. The rates of these removal steps increased with water density at 500 degrees C because the OH radical concentration increased. The OH radical concentration increased with density because the rates of the steps H + H2O = OH + H2 and CH3 + H2O = OH + CH4, which produce OH radicals, increased. Thus, the main role of water in accelerating methanol oxidation kinetics at 500 degrees C is as a hydrogen donor to a radical (R) in steps such as R + H2O = OH + RH. This system provides a striking example of SCW being involved on the molecular level in the free-radical oxidation as a reactant in elementary steps.  相似文献   

14.
The reactions of methyl and methylperoxyl radicals derived from dimethyl sulfoxide (DMSO) with hydrogen peroxide, peroxymonocarbonate (HCO4 (-)), and persulfate were studied. The major reaction observed for the hydroperoxides was the abstraction of the hydrogen atom by the radicals. The radicals interact with a lone pair of electrons on the peroxide to produce methanol and formaldehyde. Furthermore, the results indicate that in RO2H and RO2R', electron-withdrawing groups cause a considerable increase in the reactivity of the peroxides towards the radicals and not only towards nucleophiles. The HO2 (.)/O2 (.-) and CO3 (.-) radicals react with DMSO to produce methyl radicals. Thus, the formation of the (.)CH3 radicals in the presence of DMSO is not proof of the formation of the (.)OH radicals in the system. These reactions must be considered when radical processes, such as in biological and catalytic systems, are studied. Especially, the plausible role of HCO4 (-) ions in biological systems as a source of oxidative stress cannot be overlooked.  相似文献   

15.
Electron paramagnetic resonance (EPR) method has shown that hydrogen atoms and acetic acid free radicals appear in surrounding acetic acid-water solution of collagen under ultraviolet (UV) irradiation. These free radicals interact with the collagen molecule; consequently, seven superfine components of EPR spectrum with the split of aH = 11.3G and g-factor 2.001 appear. It is assumed that this spectrum is related to the free radical occurred on the proline residue in collagen molecule. In order to discover .OH hydroxyl radicals even in minor concentration, spin trap 5.5-dimethyl-1-pyrroline N-oxide (DMPO) has been applied. During the irradiation of collagen water solution in the presence of spin trap, EPR spectrum of the DMPO/.OH adduct has not been identified, while the above mentioned spectrum has been observed once the hydrogen peroxide H2O2 and FeSO4 were added to the sample. That means that water photolysis does not take place in collagen water-solution due to UV irradiation. It was suggested that occurrence of hydrogen radical is connected with the electron transmission to the hydrogen ion. The possible source of free electrons can be aromatic residues, photo ionization of which takes place in collagen molecule due to UV irradiation.  相似文献   

16.
The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA) was found to effectively catalyze the oxidation of isopropanol to acetone with hydrogen peroxide. The electronic spectra of solutions and the kinetics of oxidation were studied. The conclusion was drawn that the rate-determining stage of the reaction was the decomposition of the vanadium(V) diperoxo complex with PCA, and the particle that induced the oxidation of isopropanol was the hydroxyl radical. Supposedly, the HO· radical detached a hydrogen atom from isopropanol, and the Me2 C· (OH) radical formed reacted with HOO· to produce acetone and hydrogen peroxide. The electronic spectra of solutions in isopropanol and acetonitrile and the dependences of the initial rates of isopropanol oxidation without a solvent and cyclohexane oxidation in acetonitrile on the initial concentration of hydrogen peroxide were compared. The conclusion was drawn that hydroxyl radicals appeared in the oxidation of alkanes in acetonitrile in the decomposition of the vanadium diperoxo complex rather than the monoperoxo derivative, as was suggested by us earlier.  相似文献   

17.
In the γ-irradiated aromatic epoxy resin, diglycidylether of bisphenol A cured with diaminodiphenylmethane, the cyclohexadienyl-type radical is produced as one of the main radical species. Although both the resin and the hardener contain benzene rings, it is concluded that the cyclohexadienyl-type radical is formed by selective addition of the OH hydrogen to the benzene ring on the resin side. The selectivity is accounted for in terms of electron capture by the benzene ring followed by proton transfer from the OH group which is located in front of the benzene ring. This reaction scheme is further supported by the effect of the addition of an electron scavenger on the radical yield as well as by the photobleaching behavior of the radicals involved.  相似文献   

18.
Radiolysis kinetics in NO(3)(-) and NO(2)(-) solutions during γ-irradiation were studied at an absorbed dose rate of 2.1 Gy·s(-1) at room temperature. Air- or argon-saturated nitrate or nitrite solutions at pH 6.0 and 10.6 were irradiated, and the aqueous concentrations of molecular water decomposition products, H(2) and H(2)O(2), and the variation in the concentrations of NO(3)(-) and NO(2)(-) were measured as a function of irradiation time. The experimental data were compared with computer simulations using a comprehensive radiolysis kinetic model to aid in interpretation of the experimental results. The effect of nitrate and nitrite, present at concentrations below 10(-3) M, on water radiolysis processes occurs through reactions with the radical species generated by water radiolysis, (?)e(aq)(-), (?)O(2)(-), and (?)OH. The changes in H(2) and H(2)O(2) concentrations observed in the presence of nitrate and nitrite under a variety of conditions can be explained by a reduction in the radical concentrations. The kinetic analysis shows that the main loss pathway for H(2) is the reaction with (?)OH and the main loss pathways for H(2)O(2) are reactions with (?)e(aq)(-) and (?)OH. Nitrate and nitrite compete for the radicals leading to an increase in the concentrations of H(2) and H(2)O(2). Post-irradiation measurements of H(2), H(2)O(2), NO(2)(-) and NO(3)(-) concentrations can be used to calculate the radical concentrations and provide information on the redox conditions of the irradiated aqueous solutions.  相似文献   

19.
Polymers having stable nitroxyl free radicals, poly-4-methacryloylamino- and poly-4-methacryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyls, were synthesized from their precursor polymers by oxidizing them in a methanolic solution of hydrogen peroxide. The precursor polymers were prepared by radical polymerization of 4-methacryloyl-amino/oxy-2,2,6,6-tetramethylpiperidines in various solvents. These polymerizations in acetic acid were found to yield polymers of high molecular weight. The copolymers of the precursor monomers with styrene and methyl methacrylate were also prepared as precursor copolymers. These precursor polymers of a piperidine type were converted to the polymers having stable nitroxyl free radicals by the hydrogen peroxide method. In this report, it was assumed that the post-oxidation reaction introduced a nitroxyl group smoothly and quantitatively at room temperature. Elucidations of the stable radical formation and the electron spin behavior of the stable radical polymers were made in terms of elemental analyses, infrared, ultraviolet, and ESR spectroscopy.  相似文献   

20.
Hydroxyl radical intermediates are trapped in calcined Cu/HY zeolites in the presence of oxygen and water. This suggests that hydrogen peroxide is formed in situ from oxygen. Br?nsted acids enhance the formation of the radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号