首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonlinear finite difference scheme is studied for solving the Kuramoto–Tsuzuki equation. Because the maximum estimate of the numerical solution can not be obtained directly, it is difficult to prove the stability and convergence of the scheme. In this paper, we introduce the Brouwer-type fixed point theorem and induction argument to prove the unique existence and convergence of the nonlinear scheme. An iterative algorithm is proposed for solving the nonlinear scheme, and its convergence is proved. Based on the iterative algorithm, some linearized schemes are presented. Numerical examples are carried out to verify the correction of the theory analysis. The extrapolation technique is applied to improve the accuracy of the schemes, and some interesting results are obtained.  相似文献   

2.
An exact and a truncated difference schemes are constructed for eigenvalue boundary-value problems for a differential equation with the same degeneracy as the Jacobi polynomial equation. The truncated scheme of rank m is shown to be accurate to (m +1)-st order. Kiev University. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 67, pp. 3–15, 1989.  相似文献   

3.
A fully implicit finite difference (FIFD) scheme with second-order space–time accuracy is studied for a nonlinear diffusion equation with general capacity term. A new reasoning procedure is introduced to overcome difficulties caused by the nonlinearity of the capacity term and the diffusion operator in the theoretical analysis. The existence of the FIFD solution is investigated at first which plays an important role in the analysis. It is established by choosing a new test function to bound the solution and its temporal and spatial difference quotients in suitable norms in the fixed point arguments, which is different from the traditional way. Based on these bounds, other fundamental properties of the scheme are rigorously analyzed consequently. It shows that the scheme is uniquely solvable, unconditionally stable, and convergent with second-order space–time accuracy in L(L2) and L(H1) norms. The theoretical analysis adapts to both one- and multidimensional problems, and can be extended to schemes with first-order time accuracy. Numerical tests are provided to verify the theoretical results and highlight the high accuracy of the second-order space–time accurate scheme. The reasoning techniques can be extended to a broad family of discrete schemes for nonlinear problems with capacity terms.  相似文献   

4.
提出了求解三维抛物型方程的一个高精度显式差分格式.首先,推导了一个特殊节点处一阶偏导数(■u)/(■/t)的一个差分近似表达式,利用待定系数法构造了一个显式差分格式,通过选取适当的参数使格式的截断误差在空间层上达到了四阶精度和在时间层上达到了三阶精度.然后,利用Fourier分析法证明了当r1/6时,差分格式是稳定的.最后,通过数值试验比较了差分格式的解与精确解的区别,结果说明了差分格式的有效性.  相似文献   

5.
An asymptotically stable two-stage difference scheme applied previously to a homogeneous parabolic equation with a homogeneous Dirichlet boundary condition and an inhomogeneous initial condition is extended to the case of an inhomogeneous parabolic equation with an inhomogeneous Dirichlet boundary condition. It is shown that, in the class of schemes with two stages (at every time step), this difference scheme is uniquely determined by ensuring that high-frequency spatial perturbations are fast damped with time and the scheme is second-order accurate and has a minimal error. Comparisons reveal that the two-stage scheme provides certain advantages over some widely used difference schemes. In the case of an inhomogeneous equation and a homogeneous boundary condition, it is shown that the extended scheme is second-order accurate in time (for individual harmonics). The possibility of achieving second-order accuracy in the case of an inhomogeneous Dirichlet condition is explored, specifically, by varying the boundary values at time grid nodes by O(τ 2), where τ is the time step. A somewhat worse error estimate is obtained for the one-dimensional heat equation with arbitrary sufficiently smooth boundary data, namely, $O\left( {\tau ^2 \ln \frac{T} {\tau }} \right) $ , where T is the length of the time interval.  相似文献   

6.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
本文对一维非线性 Schrödinger 方程给出两个紧致差分格式, 运用能量方法和两个新的分析技 巧证明格式关于离散质量和离散能量守恒, 而且在最大模意义下无条件收敛. 对非线性紧格式构造了 一个新的迭代算法, 证明了算法的收敛性, 并在此基础上给出一个新的线性化紧格式. 数值算例验证 了理论分析的正确性, 并通过外推进一步提高了数值解的精度.  相似文献   

8.
In this article, using the method of dummy domains and operators of exact difference schemes, we construct a difference scheme for the first boundary-value problem in elasticity theory. The scheme, for domains of an arbitrary shape, has the order of accuracy O(h1/2)with respect to the norm of W 2 1 ().  相似文献   

9.
Exact difference scheme operators are applied to construct a method of lines scheme and a difference scheme for a multidimensional hyperbolic equation. An accuracy bound compatible with the smoothness of the solution of the differential problem is defined for the method of lines and the grid method. The accuracy of the two schemes is established in the sense of this definition. A computational experiment shows that the lower accuracy of the method of lines and the grid method for the hyperbolic equation compared with the accuracy bounds for elliptic and parabolic equations is attributable to the specific features of the hyperbolic equations.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 57, pp. 26–33, 1985.  相似文献   

10.
An approach to the construction of high-order accurate implicit predictor-corrector schemes is proposed. The accuracy is improved by choosing a special time integration step for computing numerical fluxes through cell interfaces by using an unconditionally stable implicit scheme. For smooth solutions of advection equations with constant coefficients, the scheme is second-order accurate. Implicit difference schemes for multidimensional advection equations are constructed on the basis of Godunov’s method with splitting over spatial variables as applied to the computation of “large” values at an intermediate layer. The numerical solutions obtained for advection equations and the radiative transfer equations in a vacuum are compared with their exact solutions. The comparison results confirm that the approach is efficient and that the accuracy of the implicit predictor-corrector schemes is improved.  相似文献   

11.
This article represents a new nonlinear Galerkin scheme for the Navier-Stokes equations. This scheme consists of a nonlinear Galerkin finite element method and a two-step difference method. Moreover, we also provide a Galerkin scheme. By convergence analysis, two numerical schemes have the same second-order convergence accuracy for the spatial discretization and time discretization if H is chosen such that H = O(h2/3). However, the nonlinear Galerkin scheme is simpler than the Galerkin scheme, namely, this scheme can save a large amount of computational time. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Moffatt and Duffy [1] have shown that the solution to the Poisson equation, defined on rectangular domains, includes a local similarity term of the form: r2log(r)cos(2θ). The latter means that the second (and higher) derivative of the solution with respect to r is singular at r = 0. Standard high‐order numerical schemes require the existence of high‐order derivatives of the solution. Thus, for the case considered by Moffatt and Duffy, the high‐order finite‐difference schemes loose their high‐order convergence due to the nonregularity at r = 0. In this article, a simple method is outlined to regain the high‐order accuracy of these schemes, without the need of any modification in the scheme's algorithm. This is a significant consideration when one wants to use a given finite‐difference computer code for problems with local nonregular similarity solutions. Numerical examples using the modified scheme in conjunction with a sixth‐order finite difference approximation are provided. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:336–346, 2001  相似文献   

13.
In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrödinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.  相似文献   

14.
The general alternating schemes with intrinsic parallelism for semilinear parabolic systems are studied. First we prove the a priori estimates in the discrete H1 space of the difference solution for these schemes. Then the existence of the difference solution for these schemes follows from the fixed point principle. Finally the unconditional stability of the general alternating schemes is proved. The alternating group explicit scheme, the alternating segment explicit–implicit scheme and the alternating segment Crank–Nicolson scheme are the special cases of the general alternating schemes.  相似文献   

15.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

17.
构造二维双曲型方程完全守恒差分格式的一种方法   总被引:1,自引:0,他引:1  
陈光南 《计算数学》1991,13(4):439-449
§1 许多物理过程(例如气动力学,激光等离子体相互作用,磁流体力学,基本粒子输运等)的数学模型均可写成偏导数形式的二维不定常偏微分方程组:  相似文献   

18.
In this paper, a solution to a two-dimensional wave equation using the Laguerre transform is considered. Optimal parameters of finite difference schemes for this equation are obtained. Numerical values of these optimal parameters are specified. Second-order finite difference schemes with the optimal parameters provide an accuracy of solving the equations close to that provided by a fourth-order scheme. It is shown that using the Laguerre decomposition can reduce the number of optimal parameters in comparison with using the Fourier decomposition. This simplifies the finite difference schemes and decreases the number of calculations, that is, makes the algorithm more efficient.  相似文献   

19.
The Ostrovsky equation describes gravity waves under the influence of Coriolis force. It is known that solutions of this equation conserve the L2 norm and an energy function that is determined non-locally. In this paper we propose four conservative numerical schemes for this equation: a finite difference scheme and a pseudospectral scheme that conserve the norm, and the same types of schemes that conserve the energy. A numerical comparison of these schemes is also provided, which indicates that the energy conservative schemes perform better than the norm conservative schemes.  相似文献   

20.
In a Banach space, for the approximate solution of the Cauchy problem for the evolution equation with an operator generating an analytic semigroup, a purely implicit three-level semidiscrete scheme that can be reduced to two-level schemes is considered. Using these schemes, an approximate solution to the original problem is constructed. Explicit bounds on the approximate solution error are proved using properties of semigroups under minimal assumptions about the smoothness of the data of the problem. An intermediate step in this proof is the derivation of an explicit estimate for the semidiscrete Crank–Nicolson scheme. To demonstrate the generality of the perturbation algorithm as applied to difference schemes, a four-level scheme that is also reduced to two-level schemes is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号