首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
The main difficulties in the Laplace’s method of asymptotic expansions of integrals are originated by a change of variables. We propose a variant of the method which avoids that change of variables and simplifies the computations. On the one hand, the calculation of the coefficients of the asymptotic expansion is remarkably simpler. On the other hand, the asymptotic sequence is as simple as in the standard Laplace’s method: inverse powers of the asymptotic variable. New asymptotic expansions of the Gamma function Γ(z) for large z and the Gauss hypergeometric function 2F1(a,b,c;z) for large b and c are given as illustrations. An explicit formula for the coefficients of the classical Stirling expansion of Γ(z) is also given.  相似文献   

2.
The standard saddle point method of asymptotic expansions of integrals requires to show the existence of the steepest descent paths of the phase function and the computation of the coefficients of the expansion from a function implicitly defined by solving an inversion problem. This means that the method is not systematic because the steepest descent paths depend on the phase function on hand and there is not a general and explicit formula for the coefficients of the expansion (like in Watson's Lemma for example). We propose a more systematic variant of the method in which the computation of the steepest descent paths is trivial and almost universal: it only depends on the location and the order of the saddle points of the phase function. Moreover, this variant of the method generates an asymptotic expansion given in terms of a generalized (and universal) asymptotic sequence that avoids the computation of the standard coefficients, giving an explicit and systematic formula for the expansion that may be easily implemented on a symbolic manipulation program. As an illustrative example, the well-known asymptotic expansion of the Airy function is rederived almost trivially using this method. New asymptotic expansions of the Hankel function Hn(z) for large n and z are given as non-trivial examples.  相似文献   

3.
We give an overview of basic methods that can be used for obtaining asymptotic expansions of integrals: Watson’s lemma, Laplace’s method, the saddle point method, and the method of stationary phase. Certain developments in the field of asymptotic analysis will be compared with De Bruijn’s book Asymptotic Methods in Analysis. The classical methods can be modified for obtaining expansions that hold uniformly with respect to additional parameters. We give an overview of examples in which special functions, such as the complementary error function, Airy functions, and Bessel functions, are used as approximations in uniform asymptotic expansions.  相似文献   

4.
The main difficulty in Laplace's method of asymptotic expansions of double integrals is originated by a change of variables. We consider a double integral representation of the second Appell function F2(a,b,b,c,c;x,y) and illustrate, over this example, a variant of Laplace's method which avoids that change of variables and simplifies the computations. Essentially, the method only requires a Taylor expansion of the integrand at the critical point of the phase function. We obtain in this way an asymptotic expansion of F2(a,b,b,c,c;x,y) for large b, b, c and c. We also consider a double integral representation of the fourth Appell function F4(a,b,c,d;x,y). We show, in this example, that this variant of Laplace's method is uniform when two or more critical points coalesce or a critical point approaches the boundary of the integration domain. We obtain in this way an asymptotic approximation of F4(a,b,c,d;x,y) for large values of a,b,c and d. In this second example, the method requires a Taylor expansion of the integrand at two points simultaneously. For this purpose, we also investigate in this paper Taylor expansions of two-variable analytic functions with respect to two points, giving Cauchy-type formulas for the coefficients of the expansion and details about the regions of convergence.  相似文献   

5.
Most standard textbooks about asymptotic approximations of integrals do not give explicit formulas for the coefficients of the asymptotic methods of Laplace and saddle point. In these techniques, those coefficients arise as the Taylor coefficients of a function defined in an implicit form, and the coefficients are not given by a closed algebraic formula. Despite this fact, we can extract from the literature some formulas of varying degrees of explicitness for those coefficients: Perron’s method (in Sitzungsber. Bayr. Akad. Wissensch. (Münch. Ber.), 191–219, 1917) offers an explicit computation in terms of the derivatives of an explicit function; in (de Bruijn, Asymptotic Methods in Analysis. Dover, New York, 1950) we can find a similar formula for the Laplace method which uses derivatives of an explicit function. Dingle (in Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, New York, 1973) gives the coefficients of the saddle point method in terms of a contour integral. Perron’s method is rediscovered in (Campbell et al., Stud. Appl. Math. 77:151–172, 1987), but they also go farther and compute the above mentioned derivatives by means of a recurrence. The most recent contribution is (Wojdylo, SIAM Rev. 48(1):76–96, 2006), which rediscovers the Campbell, Fr?man and Walles’ formula and rewrites it in terms of Bell polynomials (in the Laplace method) using new ideas of combinatorial analysis which efficiently simplify and systematize the computations. In this paper we continue the research line of these authors. We combine the more systematic version of the saddle point method introduced in (López et al., J. Math. Anal. Appl. 354(1):347–359, 2009) with Wojdylo’s idea to derive a new and more explicit formula for the coefficients of the saddle point method, similar to Wojdylo’s formula for the coefficients of the Laplace method. As an example, we show the application of this formula to the Bessel function.  相似文献   

6.
Expansions in terms of Bessel functions are considered of the Kummer function 1 F 1(a; c, z) (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of these polynomials for large degree is given. Tables are given to show the rate of approximation of the asymptotic estimates. The numerical performance of the expansions is discussed together with the numerical stability of recurrence relations to compute the polynomials. The asymptotic character of the expansions is explained for large values of the parameter a of the Kummer function.  相似文献   

7.
We consider the Mellin convolution integral representation of the second Appell function given in [8]. Then, we apply the asymptotic method designed in [12] for this kind of integrals to derive new asymptotic expansions of the Appell function F 2 for one large variable in terms of hypergeometric functions. For certain values of the parameters, some of these expansions involve logarithmic terms in the asymptotic variables. The accuracy of the approximations is illustrated with numerical experiments.  相似文献   

8.
9.
In this work, we are concerned with the derivation of full asymptotic expansions for Fourier integrals as s → ∞, where s is real positive, [ab] is a finite interval, and the functions f(x) may have different types of algebraic and logarithmic singularities at x = a and x = b. This problem has been treated in the literature by techniques involving neutralizers and Mellin transforms. Here, we derive the relevant asymptotic expansions by a method that employs simpler and less sophisticated tools.  相似文献   

10.
We study the coefficients of asymptotic expansions of oscillating integrals. We also consider the connection with the coefficients of Laurent expansions at candidate poles of the distribution |f|λ and show that some of these coefficients vanish. Next, we express some of the most important of these coefficients as the so-called principal value integrals, first introduced by Langlands. Together with our results on principal value integrals, this leads to new results on the vanishing of these coefficients.  相似文献   

11.
Hadamard expansions are constructed for Laplace-type integrals containing a parameter and an asymptotic variable x, which may be real or complex. These expansions yield a method of hyperasymptotic evaluation that remains valid throughout a range of the parameter corresponding to coalescence of a saddle point with an endpoint of the integration path. Numerical examples are given to illustrate the practical aspects of the computations.  相似文献   

12.
Summary. Integral representations are derived for the parabolic cylinder functions U(a,x), V(a,x) and W(a,x) and their derivatives. The new integrals will be used in numerical algorithms based on quadrature. They follow from contour integrals in the complex plane, by using methods from asymptotic analysis (saddle point and steepest descent methods), and are stable starting points for evaluating the functions U(a,x), V(a,x) and W(a,x) and their derivatives by quadrature rules. In particular, the new representations can be used for large parameter cases. Relations of the integral representations with uniform asymptotic expansions are also given. The algorithms will be given in a future paper.Mathematics Subject Classification (2000): 33C15, 41A60, 65D20Revised version received July 25, 2003  相似文献   

13.
An asymptotic expansion including error bounds is given for polynomials {P n, Qn} that are biorthogonal on the unit circle with respect to the weight function (1?e)α+β(1?e?iθ)α?β. The asymptotic parameter isn; the expansion is uniform with respect toz in compact subsets ofC{0}. The pointz=1 is an interesting point, where the asymptotic behavior of the polynomials strongly changes. The approximants in the expansions are confluent hyper-geometric functions. The polynomials are special cases of the Gauss hyper-geometric functions. In fact, with the results of the paper it follows how (in a uniform way) the confluent hypergeometric function is obtained as the limit of the hypergeometric function2 F 1(a, b; c; z/b), asb→±∞,zb, withz=0 as “transition” point in the uniform expansion.  相似文献   

14.
We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, which is a weight function with a finite number of algebraic singularities on [−1,1]. The recurrence coefficients can be written in terms of the solution of the corresponding Riemann–Hilbert (RH) problem for orthogonal polynomials. Using the steepest descent method of Deift and Zhou, we analyze the RH problem, and obtain complete asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1/n terms in the expansions. A critical step in the analysis of the RH problem will be the local analysis around the algebraic singularities, for which we use Bessel functions of appropriate order. In addition, the RH approach gives us also strong asymptotics of the orthogonal polynomials near the algebraic singularities in terms of Bessel functions.  相似文献   

15.
16.
Taylor expansions of analytic functions are considered with respect to several points, allowing confluence of any of them. Cauchy-type formulas are given for coefficients and remainders in the expansions, and the regions of convergence are indicated. It is explained how these expansions can be used in deriving uniform asymptotic expansions of integrals. The method is also used for obtaining Laurent expansions in several points as well as Taylor-Laurent expansions.

  相似文献   


17.
The coefficients that appear in uniform asymptotic expansions for integrals are typically very complicated. In the existing literature, the majority of the work only give the first two coefficients. In a limited number of papers where more coefficients are given, the evaluation of the coefficients near the coalescence points is normally highly numerically unstable. In this paper, we illustrate how well‐known Cauchy‐type integral representations can be used to compute the coefficients in a very stable and efficient manner. We discuss the cases: (i) two coalescing saddles, (ii) two saddles coalesce with two branch points, and (iii) a saddle point near an endpoint of the interval of integration. As a special case of (ii), we give a new uniform asymptotic expansion for Jacobi polynomials in terms of Laguerre polynomials as that holds uniformly for z near 1. Several numerical illustrations are included.  相似文献   

18.
Summary We present a method of convergence acceleration for limitk-periodic continued fractionsK(a n /1) orK(1/b n ) satisfying certain asymptotic side conditions. The method represents an improvement of the fixed point modification considered by Thron and Waadeland [8], under these conditions. The regularC-fraction expansions of hypergeometric functions2 F 1(a, 1;c; z) and2 F 1(a, b; c; z)/2 F 1(a, b+1;c+1;z) are examples of continued fractions satisfying these conditions.  相似文献   

19.
The paper is concerned with bounds for integrals of the type
, involving Jacobi polynomials p n (α,β) and Jacobi weights w (a,b) depending on α,β, a, b > −1, where the subsets U k (x) ⊂ [−1, 1] located around x and are given by with . The functions to be integrated will also be of the type on the domain [−1,1] t/ U k (x). This approach uses estimates of Jacobi polynomials modified Jacobi weights initiated by Totik and Lubinsky in [1]. Various bounds for integrals involving Jacobi weights will be derived. The results of the present paper form the basis of the proof of the uniform boundedness of (C, 1) means of Jacobi expansions in weighted sup norms in [3].   相似文献   

20.
In this paper, we study a two-parameter family of systemsE c in whichE 0 as a contour consisting of a saddle point and two periodic motions of saddle type, i.e., the situation is similar to that described by Lorenz equations for parametersb=8/3, σ=10,r=r l =24.06, and get some results concerning bifurcation phenomenon and dynamical behavior of the orbits ofE c in a small neighborhood of the contour for |ε| near zero. Thus, under a few natural assumptions which are verified numerically, we can explain some numerical results of Lorenz equations for parameters near the above values in a mathematically precise way, which is different from the methods of J. Guckenheimer et al.([3], [4]), by considering Lorenz equation as a one—or two—dimensional map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号