共查询到20条相似文献,搜索用时 208 毫秒
1.
采用化学沉淀法制备出片状和棒状混合的纳米β-Ni(OH)2.将纳米粉体以8;比例掺入到球镍中制成复合电极,研究了反应温度和搅拌速度对纳米粉体结构、形貌及其复合电极电化学性能的影响.结果表明:反应温度升高,纳米颗粒粒径增大;搅拌速度提高,粒径减小;复合电极的放电比容量随反应温度和搅拌速度提高先增大后减小,当反应温度为50 ℃、搅拌速度为500 r/min时,相应的复合电极放电比容量最大,达到了263.3 mAh/g,比纯球镍电极放电比容量(239.4 mAh/g)提高了约10;.研究还显示,复合电极的放电比容量与其粉体的压实密度有直接关系,其放电比容量和放电平台均高于纯球镍电极. 相似文献
2.
微波烧结由于具有高效、快速、绿色等特点越来越受到人们的关注.本文以天然煤粉(C)和硼酸(H3BO3)为原料,在无气氛保护条件下,利用2.45 GHz的TE666单频微波烧结炉,快速碳热还原反应法制备出纳米碳化硼(B4C)粉体.结果发现:当煤粉(C)和硼酸(H3BO3)质量比为3∶1,微波烧结温度为1400~1800 ℃,保温时间为5 min,即可制备出结晶良好的碳化硼(B4C)晶体,调整相关工艺参数可以控制B4C晶体的形貌,如直径为50~150 nm的球形颗粒或碳化硼片状结构,通过改变Na2CO3添加剂含量(3wt;~9wt;),可得到不同尺寸的碳化硼纳米片(边长为200~800 nm),获得传统电阻烧结条件下无法得到的碳化硼(B4C)晶体. 相似文献
3.
分别以Zn粉和S粉为原材料,Ga为掺杂剂,Au纳米颗粒为催化剂,采用低温化学气相沉积法(CVD),在Si(l00)衬底上制备了Ga掺杂的ZnS纳米结构.利用X射线衍射仪(XRD)、能量弥散X-ray谱(EDS)、场发射扫描电子显微镜(SEM)和光致发光光谱(PL)等测试手段对样品的结构、成分、形貌和发光性能进行了分析.结果表明:随着温度的升高(450~ 550℃),Ga掺杂ZnS纳米结构的形貌发生了从蠕虫状纳米线到光滑纳米线再到纳米棒的演变,所制备的Ga掺杂的ZnS纳米结构均为六方纤锌矿结构,分别在波长为336 nm和675 nm处存在一个较强的近带边紫外发射峰和一个Ga掺杂引起的微弱红光峰,而其它发光峰均是缺陷引起的.此外,本文还对Ga掺杂ZnS纳米结构的形成过程进行了探讨,并提出了可能的形成机理. 相似文献
4.
5.
利用化学共沉淀法制备了细小均匀的NiCuZn铁氧体前驱体粉体,通过XRD、TG-DSC、激光粒度仪(LPS)、精密阻抗分析仪、振动样品磁强计(VSM)等手段对粉体进行表征.研究前驱体的粒度分布及晶化过程,在不同的预烧温度下样品的磁性能,不同烧结温度的相结构、磁滞回线和磁性能.结果表明:前驱体粒度分布均匀,烧结后可以得到纯相的尖晶石型NiCuZn铁氧体.当预烧温度为500℃,烧结温度为900℃时,样品磁导率μi约为200,品质因数Q约为150,截止频率约为70 MHz. 相似文献
6.
7.
8.
采用碳热还原法,以单质Si粉和活性炭为原料,Fe2 O3为添加剂,研究了还原气氛下热处理温度(1200~1700℃)对SiC纳米材料形貌和发光性能的影响.结果 表明:不同热处理温度下,单质Si粉和活性炭均可反应生成SiC纳米材料,但当热处理温度为1200℃和1300℃时,二者反应不完全;当热处理温度由1400℃增至1700℃时,单质Si粉和活性炭的反应增强,并在1600℃热处理后完全转化为SiC,其形貌由棒状和颗粒状的混合体转化为单一的短棒状,进而又发育为纤维状.此外,不同热处理温度下获得的SiC纳米材料均具有较宽的发射带宽,经1600℃热处理后SiC纳米材料的发光性能较优,其发光峰强度优于其它热处理温度下的产物,这是因为此温度下所获SiC纳米材料呈纤维状,其长径比较高,有利于发光性能的改善所致. 相似文献
9.
10.
11.
合成温度对碳热还原法合成碳化硅晶须形貌的影响 总被引:1,自引:0,他引:1
以SiO2微粉为硅源,炭黑为碳源,氧化硼为催化剂,采用碳热还原法分别在1500 ℃、1550 ℃、1600 ℃制备了SiC晶须.通过扫描电镜,电子探针和透射电镜等分析手段,研究了合成温度对SiC晶须形貌的影响,探讨了晶须的生长机理.结果表明:当合成温度为1500 ℃时,所合成的SiC晶须形貌呈竹节状,选区电子衍射分析发现孪晶等面缺陷在晶须的生长方向上周期性出现;当合成温度在1550 ℃以上时,哑铃状晶须的数量会急剧增多,分析表明晶须表面包裹的串珠小球为β-SiC.在晶须的顶端发现催化剂熔球,由此推测生长机理为VLS机理,但当合成温度超过1550 ℃时,SiC会以VS生长机理沿径向沉积生成哑铃状晶须. 相似文献
12.
采用溶胶-凝胶法,在Si(100)和石英玻璃衬底上制备了3;Co掺杂CeO2稀磁氧化物薄膜,研究了不同退火温度(500 ℃, 600 ℃和700 ℃)对薄膜结构和铁磁性能的影响.XRD 和拉曼光谱结果表明,随着退火温度的升高,薄膜晶化度明显提高.不同退火温度下的3;Co掺杂CeO2薄膜为多晶薄膜,且未破坏CeO2原有的结构.随着退火温度的升高, 晶粒尺寸逐渐增大.另外,3;Co掺杂CeO2薄膜在可见光范围内都有很好的透射率,其室温下的光学带隙Eg随退火温度增加而减小.超导量子干涉磁强计(SQUID)测量表明所有样品都表现出室温铁磁性,随着退火温度的升高,饱和磁化强度和矫顽力增大,700 ℃退火的薄膜具有最大的饱和磁化强度和最大的矫顽力.不同退火温度导致样品的磁性有了明显的变化,这源于磁性产生的不同机理.可见薄膜的结构最终影响了其铁磁性能. 相似文献
13.
采用水热法在不同反应时间下制备了钨酸铋(Bi2WO6)碟状结构的光催化剂,对Bi2WO6的晶体结构、组成成分、形貌、光吸收特性和可见光催化活性等进行了表征.结果表明,反应时间影响Bi2WO6样品的形貌.水热反应6h时,Bi2WO6样品处于非晶态,随着反应时间的增加,Bi2WO6由二维盘状结构逐渐堆积成三维碟状结构,水热反应48 h后可形成完整的微米碟.180℃水热反应48 h后制备出的Bi2WO6纳米材料具有较高的羟基自由基生成速率和较强的可见光催化活性,反应时间过长或者过短都不利于Bi2WO6可见光催化性能的提高.同时分析了不同Bi2WO6样品的可见光催化效率存在差异的原因,并且提出了不同反应时间下Bi2WO6材料的微观生长机理. 相似文献
14.
含钡硫铝酸钙晶体的合成及其结构和形态 总被引:22,自引:0,他引:22
以CaCO3,Al2O3,BaSO4和CaSO4*2H2O为原料,在1350℃加热合成C(4-x)BxA3粉晶,然后以PbCl2为助熔剂,借助于熔盐法制备了含钡硫铝酸钙单晶,在对其粉晶X射线多晶衍射谱指标化的基础上,以高纯Si作内标测定了C(4-x)BxA3(x=0.25,0.5,0.75,1.00)晶体属等轴晶系,立方体心晶格,晶胞参数分别为a0=9.280, 9.233, 9.261和9.303nm,与其成分变化成直线关系,符合Vegard定律.电镜观察该晶体外形为菱形十二面体.并分析了该晶体的红外光谱,认为在该晶体中存在着[AlO4]四面体. 相似文献
15.
16.
采用磁控溅射法制备SrRuO3(SRO)薄膜、脉冲激光沉积法制备BiFeO3(BFO),构架了Pt/SRO/BFO/SRO/SrTiO3(001)异质结,采用X射线衍射仪(XRD)、铁电测试仪研究了沉积温度对BFO薄膜结构和性能的影响.研究结果表明,随着温度的升高,BFO(001)和(002)衍射峰强度逐渐增强,BFO(110)和Bi2O3衍射峰强度逐渐减小,不同沉积温度下生长的样品都具有铁电性,在800 kV/cm的电场下,640 ℃下生长的BFO薄膜的剩余极化强度为65 μC/cm2.采用数学拟合的方法研究了Pt/SrRuO3/BiFeO3/SrRuO3/SrTiO3的漏电机理,结果表明BFO薄膜导电机理为普尔-弗兰克导电机理. 相似文献
17.
以抗坏血酸和甲酸为还原剂,Cu( NO3)2为铜源制备了Cu2O微晶,并借助X射线衍射(XRD)和场发射扫描电子显微镜( FE-SEM)对样品的物相组成和形貌进行了表征,同时以罗丹明B为模型污染物,探讨了Cu2O微晶的形貌对光催化活性的影响.结果表明,在室温条件下以抗坏血酸为结构导向剂可获得八面体Cu2O微晶;而以甲酸为还原剂,160℃水热反应可获得Cu2O球形微晶.光催化降解实验表明,所得Cu2O微晶对罗丹名B有一定的光催化活性,且催化剂的形貌对其活性有很大影响,八面体Cu2O微晶(111)活性晶面外露较多,因而具有较高的光催化活性. 相似文献
18.
以Zn(NO3)2·6H2O为锌源,尿素为沉淀剂,氧化石墨烯(GO)为碳源,采用均匀沉淀法合成碱式碳酸锌与氧化石墨烯复合材料前驱体,350℃下焙烧前驱体2h,获得ZnO/GO复合材料,在室温下研究了该复合材料对NOx的气敏性能.通过X射线衍射、拉曼光谱、扫描电子显微镜和透射电子显微镜对材料的形貌和结构进行表征.结果表明,所得样品为六方ZnO与GO复合材料,ZnO纳米粒子较均匀的覆盖在GO的表面.当硝酸锌溶液浓度为0.3mol/L时,所合成的复合材料对NOx有较高的灵敏度,且注入NOx体积浓度97 ppm时,灵敏度为27.5;,响应时间1s,最低检测浓度可达0.97 ppm. 相似文献
19.
20.
为改善机械零件的表面性能,采用超声波辅助化学沉积方法,在45钢基体表面制得Ni-P-TiN纳米镀层,利用透射电镜、X射线衍射仪、显微硬度计、扫描电镜、摩擦磨损试验机对其进行微观组织、机械性能及摩擦学性能研究.结果表明,镀态Ni-P-TiN纳米镀层主要由大量Ni和少量TiN组成,镍晶粒和TiN粒子的平均粒径分别为95nm和42 nm.当热处理温度达到300℃时,Ni-P-TiN纳米镀层中出现Ni3P相和NiO相,其显微硬度高达951.9Hv,其平均摩擦系数为0.43. 相似文献