首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique, geometry‐optimized, surface‐enhanced Raman scattering (SERS) fiber‐optic sensor has been recently developed and built. Though this class of sensors can be very useful in many applications, their use is greatly hindered by the fact that their reusability can hardly be achieved because of the irreversible adsorption of the analyte molecules on the SERS‐active substrate. Different substrates have been tested on our sensor with the purpose of increasing its reusability by means of cleaning procedures or good reproducibility in manufacturing the sensor, keeping, however, the same enhancement. We show that a partial reusability of the sensor is possible using SERS‐active substrates prepared by a standard process of immobilization of silver nanoparticles with 3‐aminopropyltrimethoxysilane. We also show that a fairly good reproducibility can be achieved with a low‐cost substrate realized in a short time by depositing a layer of polyvinyl alcohol (PVA) containing silver nanoparticles on the etched fiber tip. We prove as well that measurements are possible even with nanoparticles dispersed in the analyte solution instead of using a substrate directly made on the sensor tip. Finally, we have successfully tested our sensor with some molecules cited in EFSA (European Food Safety Authority) and FDA (Food and Drug Administration) reports as molecules for which new detection methods are necessary. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We report a two‐step enhancement of Raman scattering signal (η) of a few dye molecules. In the first step, high‐quality surface‐enhanced Raman scattering (SERS) substrates have been used. The SERS substrates were fabricated by direct current sputtering of Au followed by thermal annealing. The role of thermal annealing of the SERS substrates and numerical aperture of Raman microscopic objective lens on the enhancement has been studied for optimizing the enhancement in the SERS technique. In the second step, the value of η obtained with conventional SERS technique has been improved significantly with the help of photonic nanojet (PNJ) of an optical microsphere (PNJ‐mediated SERS technique). The signal to noise ratio and reproducibility of the experimental results have been found to be very high. Based on our theoretical simulations on PNJ, a few suitable parameters have been proposed for obtaining better enhancement using this technique. To the best of our belief, this report will enable the SERS community to improve η value with ease. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, we demonstrate a cascaded, multiplicative electromagnetic enhancement effect in surface‐enhanced Raman scattering (SERS) on periodically micropatterned films made of colloidal gold nanoparticles, prepared by a self‐assembly approach, without implying lithography procedures. The multiplicative enhancement effect is obtained by combining surface plasmon near‐field enhancement due to nanoscale features with far‐field photonic coupling by periodic microscale features. The effect is observed for both internal Raman reporters (molecules attached to the Au colloids before their assembly) and external Raman probes (molecules adsorbed on the samples after film assembly). The ability of the patterned films for far‐field light coupling is supported by reflectivity spectra, which present minima/maxima in the visible spectral range. Finite‐difference time‐domain computer simulations of the electric field distribution also support this interpretation. The fabricated dual‐scale SERS substrates exhibit a good spot‐to‐spot reproducibility and time stability, as proved by the SERS response over a time scale longer than 1 month. The experimental demonstration of this cascaded electromagnetic enhancement effect contributes to a better understanding of SERS and can affect future design of SERS substrates. Moreover, such dual‐scale colloidal films prepared by convective self‐assembly can be of general interest for the broader field of nanoparticle‐based devices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
表面增强拉曼散射(SERS)衬底的研究及应用   总被引:4,自引:0,他引:4  
表面增强拉曼散射(surface enhanced Raman scattering,SERS)是通过吸附在粗糙金属表面或金属纳米结构上的分子与金属表面发生的等离子共振(SPR)相互作用而引起的拉曼散射增强现象,是一种高灵敏的探测界面特性和分子间相互作用的光谱手段。文章归纳总结了近年来常用的SERS衬底的制备方法(溶液中的金属溶胶(MNPs in suspension)、 金属纳米粒子的自组装(self-assembly)、 模板法(Template method)和纳米光刻法(Nanolithographic)等;综述了这些衬底的表面增强拉曼特性;着重介绍了SERS增强在环境监测和生物医学应用上的最新国内外研究动态。目前已经能够实现增强因子高、 可靠性好、 重现性强的SERS衬底的可控制备,表明SERS可以作为一种高性能的分析探测工具,充分实现其潜在应用价值。  相似文献   

5.
Surface‐enhanced Raman scattering (SERS) spectroscopy is an analytical method for the detection of low amounts of analytes adsorbed on an appropriate coinage metal (Au, Ag, Cu) surface. Generally, the values of the enhancement factor are the highest on silver, lower on gold and relatively very low on copper. In this study, we have focused on the estimation of the enhancement factors of copper surface/substrates formed by different preparation procedures. The SERS activity of large electrochemically prepared substrates and colloidal systems is compared. The surface morphology of the large substrates was studied using scanning electron microscopy and atomic force microscopy. The size distribution of colloidal nanoparticles was monitored by dynamic light scattering. The values of enhancement factor are in both cases more than 105 for the FT‐SERS spectra, demonstrating the fundamental role of nanostructured copper as a substrate material at the excitation wavelength (1064 nm) used. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Techniques for rapid and sensitive detection of energetics such as cyclotrimethylenetrinitramine (RDX) are needed both for environmental and security screening applications. Here we report the use of surface‐enhanced Raman scattering (SERS) spectroscopy to detect traces of RDX with good sensitivity and reproducibility. Using gold (Au) nanoparticles (∼90–100 nm in diameter) as SERS substrates, RDX was detectable at concentrations as low as 0.15 mg/l in a contaminated groundwater sample. This detection limit is about two orders of magnitude lower than those reported previously using SERS techniques. A surface enhancement factor of ∼6 × 104 was obtained. This research further demonstrates the potential for using SERS as a rapid, in situ field screening tool for energetics detection when coupled with a portable Raman spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We presented a controlled particles‐in‐cavity (PIC) pattern for surface‐enhanced Raman scattering (SERS) detection. The periodic gold cavity array was fabricated by electrodeposition using highly ordered polystyrene spheres as a template. The as‐prepared gold cavities can be used as a SERS active substrate with significant spectral enhancement and reproducibility, which was evaluated by SERS signals using 4‐mercaptobenzoic acid (4‐MBA) as probe molecules. The surface of these gold cavities was further functionalized with cetyltrimethylammonium bromide molecules, which may immobilize the 4‐MBA‐modified silver nanoparticles in the gold cavity to form a PIC structure via the electrostatic interaction. We have demonstrated that there exists a pH window for the immobilization of the nanoparticles inside cavities. Therefore, the silver nanoparticles can be selectively immobilized into the functionalized gold cavities under the optimized pH value of the media. Further enhancement of the Raman scattering of the labeled molecules can be achieved due to the interconnection between the silver nanoparticles and gold cavity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Nanoparticles of noble metals, such as gold and silver, exhibit unique and tunable optical properties on account of their surface plasmon resonance. In particular, gold nanoparticles on silicon substrates are attractive for future nanoscale sensors and optical devices due to their resistance to oxidation and due to their electrical and optical properties. In this study, we developed a nanostructured gold/macroporous silicon (Au/PS) substrate capped with 11-mercaptoundecanoic acid (11-MUA) with ultra-sensitive detection properties achieved in characterization, an approach based on surface-enhanced Raman scattering (SERS). Surface-enhanced Raman scattering allows us to detect substances at a low concentration level and to observe structural details of a thiol molecule bonded to small film thicknesses. Raman measurements were carried out at 514 nm and 785 nm. In order to emphasize the effect of the Si microstructuration on the efficiency of this new substrate (Au/PS) proposed for SERS experiments, the same molecule (11-MUA) was adsorbed on it as well as on gold/atomically flat silicon (Au/Si) and on commercial Klarite (Mesophotonics) substrates. Systematic studies realized by Raman spectroscopy, electron microscopy, and X-ray spectroscopy show the influence of silicon substrate texturing and metallic deposition conditions, including time and temperature on the optical phenomena.  相似文献   

9.
This paper reports the qualitative analysis and quantitative detection of polycyclic aromatic hydrocarbon (PAH) molecules with per‐6‐deoxy‐(6‐thio)‐β‐cyclodextrin (CD‐SH) modified gold nanoparticles (AuNPs) by surface‐enhanced Raman scattering (SERS) spectroscopy. For the selective sensing of PAHs, which are environmental pollutants with very low affinity to metallic surfaces, by SERS, a stable substrate with AuNPs and CD‐SH was utilized by supramolecular interaction. Quantitative detection of each PAH was carried out by SERS on inclusion complexes with different concentrations. From the SERS spectra of a mixture of five different PAHs, we could easily distinguish each PAH by its discriminant peaks. In addition, quantitative analysis of one component in a mixture of five PAHs was also investigated. This sensing platform revealed matching relationship between the host and the guest and the host–guest interaction mechanism. The proposed approach for the selective detection of PAHs holds great potential in the detection of environmental organic pollutants. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Four nanostructured Ag substrates have been fabricated with different surface morphologies and tested with surface-enhanced Raman scattering (SERS) experiments by adsorption of adenine. Their SERS efficiency has been compared and related to the surface roughness resulting from atomic force microscopy measurements. Chemical etching of silver by thiourea/Fe(III)nitrate produces homogeneously roughened plates, exhibiting the largest three-dimensional surface and the best SERS enhancement. They mostly exhibit surface protrusions with sizes around 200 nm, thus matching the best condition for obtaining SERS enhancement by laser excitation at 785 nm. This is quite important in the case of biomolecules, whose samples often present strong fluorescence bands, which usually are not observed with red-shifted exciting lines. Moreover, these Ag platforms, owing to their uniform nanostructured surfaces, are suitable for obtaining reproducible results from microRaman investigation. In conclusion, the present nanofabrication of Ag surfaces allows obtaining SERS-active substrates, which combine high reproducibility and sensitivity and can be successfully employed in the molecular recognition of different organic ligands or biomolecules like nucleic acids and proteins.  相似文献   

11.
在沉积金纳米颗粒的干燥滤纸上进行对硝基苯胺的表面增强拉曼散射(SERS)光谱研究,并与对硝基苯胺在金胶水溶液中的表面增强拉曼散射(SERS)光谱相比,分子拉曼光谱发生了很大变化。同时利用DFT理论计算对硝基苯胺在金胶颗粒上的吸附行为的拉曼光谱。DFT理论模拟计算和FI-Raman实验分析都表明这种变化源于对硝基苯胺的不同吸附方式。SERS和DFT结合研究分子的吸附是一种有效的技术。  相似文献   

12.
The substrate‐dependent surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT) adsorbed on Au surfaces has been investigated. 4‐ABT is one of the very unique adsorbate molecules whose SERS spectral patterns are known to be noticeably dependent on the relative contribution of chemical enhancement mechanism vs electromagnetic enhancement mechanism. The SERS spectral patterns of 4‐ABT adsorbed on gold substrates with various surface morphology have thus been analyzed in terms of the symmetry types of the vibrational modes. Almost invisibly weak b2 type vibrational bands were observed in the SERS spectra of the 4‐ABT adsorbed on Au colloidal sol nanoparticles or commercially available Au micro‐powders because of the weak contribution of the chemical enhancement. However, greatly enhanced b2 vibrational bands were observed in the spectra of the 4‐ABT molecules adsorbed on the synthesized Au(Zn) sponge or the electrochemically roughened Au(ORC) foil caused by the strong contribution of the chemical enhancement mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Surface‐enhanced Raman scattering (SERS) spectra of hydroxyproline and one deuterated analogue are reported. In this work, we tackled the problem of SERS reproducibility by employing gold colloids instead of the usual silver sols to achieve plasmon enhanced Raman scattering. We slightly modified modified a previously published procedure to obtain to obtain the colloid, and concentrated the gold particles by centrifugation. The SERS spectra show distinctive bands of hydroxyproline, assigned by comparison to normal Raman spectra and density functional theory calculations. Repeated measurements using this procedure showed reproducible SERS spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
One of the most widely used methods for surface‐enhanced Raman scattering (SERS) employs silver or gold nanoparticles either in colloidal suspension or in the dry‐drop form. In such substrates the SERS amplification factors depend critically on the interparticle distances. Here, we report that microwave absorption as a function of temperature in dry‐drop substrates can be used as a probe to demarcate temperature regions for thermal annealing to produce SERS substrates with very high amplification factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Severe interference from the oxidation and laser carbonization was encountered in the measurements of surface‐enhanced Raman scattering (SERS) spectra of pyridoxine (PN) on the roughened gold electrode. However, we found that high‐quality SERS spectra of PN could be obtained by the introduction of SnCl2, which only has few Raman peaks at low wavenumbers. SnCl2, as a good reductive, is capable of removing the oxidative species on the gold substrate and the dissolved oxygen in solution, and as a result lowering the open circuit potential (OCP). Sn(II) can also strongly chemically adsorb on the gold surface and interact with PN through coordination/chelation, such that not only to prevent PN from damage by the giant electromagnetic field for the ‘first‐layer’ effect, but also to give rise to very strong Raman scattering signals of PN where chemical enhancement plays an important role. Those are the main reasons for the elimination of the oxidation and decomposition of PN and for the high‐quality SERS spectra of PN. The way the SnCl2 confines PN within the enhanced electromagnetic field by its ability of adsorption and coordination/chelation can be utilized to improve the routine SERS analysis of analogous type of reactive organic/biomolecules. In addition, this method has been successfully extended to the SERS measurements of PN on the substrates of roughened silver and copper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.  相似文献   

17.
Raman spectral mapping of thin organic layers on metal substrates is an important analytical tool to characterize these systems. Surface‐enhanced Raman scattering (SERS) spectroscopy is a suitable technique for analysis of such layers. Development of new SERS‐active surfaces with repeatable properties and without disturbing adsorbed species is one of the important steps for reliable assessment of the thin organic layers designed. This paper presents new SERS‐active substrates suitable for both macro (millimeter scale) and microscopic (micrometer scale) spectral mapping, which allow easy regeneration for repetitive experiments. Both gold and silver SERS‐active surfaces prepared by electrochemical deposition were tested. Complete map data evaluation utilities were newly designed and applied, using both ordinarily used and newly modified mathematical algorithms and chemometric procedures. Evaluation of data starts with finite impulse response (FIR) filtration algorithms to eliminate spectral interferences in individual spectra. Principal component analysis was used for transformation of multidimensional data to understandable dimensions. Various mathematical/statistical techniques were then used for data visualization as spectral maps and for similarity testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
To detect trace‐level polycyclic aromatic hydrocarbons, some investigations of an improved self‐assembly method are carried out using gold colloid films for the preparation of the surface‐enhanced Raman scattering (SERS)‐active substrate. Extinction spectra and scanning electron microscopy images reveal that controllable surface plasmonic metal substrates can be obtained by increasing the temperature of (3‐aminopropyl)trimethoxysilane solution up to 64.5 °C. The SERS‐active substrates have a high enhancement factor, and they can be both easily prepared and reproducible. With the use of these substrates, different concentrations of pyrene and anthracene in aqueous solutions were detected by SERS. A further enhancement can be supported by shifted excitation Raman difference spectroscopy. Raman signals of pyrene and anthracene adsorbed on gold colloid substrates up to limits of detection at 5 and 1 nmol/l, respectively, can be obtained. The quantitative analysis shows the possibility of in situ detection of polycyclic aromatic hydrocarbons while such gold colloid film serves as a SERS‐active substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Detection of explosive vapour using surface-enhanced Raman spectroscopy   总被引:1,自引:0,他引:1  
A commercially available nano-structured gold substrate was used for activating surface-enhanced Raman scattering (SERS). Raman spectra of the vapour of explosive material, triacetonetriperoxide (TATP), at trace concentrations produced from adsorbed molecules on such surfaces have been studied. Prominent Raman lines of the explosive molecular species were recorded at a sample temperature of ∼35°C, which is near to human body temperature. For this study, the concentration of the adsorbed TATP molecules on the nano-structured surface was varied by heating the sample to different temperatures and exposing the substrate to the sample vapour for different lengths of time. The intensities of the Raman lines have been found to increase with the increase in temperature and also with the increase in the duration of exposure for a fixed temperature. However, as expected, the Raman intensities have been found to saturate at higher temperatures and longer exposures. These saturation effects of the strengths of the Raman lines in the SERS of TATP vapour have been investigated in this paper. The results indicate that the optimisation for vapour deposition on the surface could be a crucial factor for any quantitative estimate of the concentration of the molecular species adsorbed on the nano-structured substrates.  相似文献   

20.
In this paper we theoretically consider the physical mechanisms behind the surface‐enhanced Raman scattering (SERS) enhancement produced by commercially available Klarite substrates, which consist of rectangular arrays of micrometre‐sized pyramidal pits in silicon with a thin gold coating. Full three‐dimensional numerical simulations of the pits are conducted for both a real gold metal coating and a perfect electrical conductor (PEC) to determine whether the SERS enhancement is due to diffraction or plasmon effects. The pit apex angle and metal coating thickness are also varied to determine whether it is possible to further enhance the SERS signal by optimising the structural parameters of these substrates. By decreasing the film thickness and adjusting the apex angle, it is possible to achieve an enhancement almost double that of a standard Klarite substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号