首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloramphenicol (CLM), originally derived from the bacterium Streptomyces venezuelae, is an inhibitor of bacterial ribosomal peptidyl transferase activity. The near infrared Fourier transform (NIR‐FT) Raman, surface‐enhanced Raman spectroscopy (SERS) and Fourier transform infrared (FT‐IR) spectral analyses of CLM, a potential antibacterial drug for the treatment of typhoid fever, were carried out along with density functional computations. The vibrational spectral analysis reveals that the CH2 asymmetric and symmetric stretching modes are shifted to higher wavenumbers than the computed values, owing to the electronic effects resulting from induction of methylene group with the adjacent electronegative atom. The lowering of CO stretching wavenumber is due to the presence of the strong electronegative atom, nitrogen, attached to the carbonyl carbon, causing large degree of molecular π‐electron delocalization and redistribution of electrons, which weakens the CO bond. The absence of a C H stretching vibration and the observed C H out‐of‐plane bending modes suggest that the CLM molecule may be adsorbed in a flat orientation with respect to the silver surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Polyvinyl alcohol (PVA)‐protected silver nanoarchitecture (PVA Ag nanofilm) on the surface of the glass substrate was prepared by using electrostatic self‐assembly at a proper voltage. The two‐dimensional morphology of the PVA Ag nanofilm has been examined by scanning electron microscopy (SEM). The surface‐enhanced Raman scattering (SERS) spectra of human serum (HS) on PVA Ag nanofilms were recorded. The results show that the Raman scattering of HS can be enhanced efficiently based on these PVA Ag nanofilms. However, it also can be seen that the effect of sodium citrate (SC) acting as anticoagulant on the SERS spectrum of HS is unnegligible, which has not been discussed adequately in the previous reports. To discuss the effect of SC on the SERS spectrum of HS, we have studied the normal Raman spectra of solid SC and the SERS spectra of 1.0 × 10−3 mol/l aqueous solution of SC adsorbed on the PVA–Ag nanofilms. Meanwhile, Raman wavenumbers of the SC molecule were calculated by using the method of DFT‐B3LYP/6‐31G*, and the dominant assignations of the calculated wavenumbers were performed. It was found that the density functional theory (DFT) calculation of SC Raman spectrum matches well with the experimental results. With the perfect reproducibility and high SERS activity, this method will be useful in the development of HS detection methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3‐21G and 6‐311 + G(d,p) basis sets. The vibrations in the region 1600–1000 cm−1 were found to comprise various mixed modes including in‐plane stretching and bending of various C C, N N, C N and C O bonds and angles in the molecule. Below ∼900 cm−1, the out‐of‐plane bending modes were dominant. The central hydrazo chromophore of the Sudan I molecule was involved in the majority of the vibrations through NN and C N stretching and various bending modes. Low‐intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line. Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different bands Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Fourier transform Raman and IR as well as UV–visible spectra of the phenothiazine dye Azure A chloride, 3‐amino‐7‐(dimethylamino) phenothiazin‐5‐ium chloride were recorded and analyzed. The spectral interpretation was done following full structure optimization and vibrational wavenumber calculations based on the density functional theory (DFT) using the standard B3LYP/6‐31G(d) basis set. The N H stretching wavenumber is found to be lowered owing to intermolecular N H···S hydrogen bonding. The downshift of C H stretching wavenumber is discussed. The first hyperpolarizability of the dye is calculated. Time‐dependent density functional theory (TD‐DFT) calculations of electronic spectra were performed on the optimized structure and compared with the experimental UV–visible spectrum. The atomic net charges of the molecule reveal the  M effect of the nitrogen atoms in the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinearity and bioactivity, charge delocalization and mesomeric effects have been analyzed using natural bond orbital (NBO) analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Adsorption of 4,4′‐thiobisbenzenethiol (4,4′‐TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface‐enhanced Raman scattering (SERS) for the first time, which indicates that 4,4′‐TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H‐atoms of the S H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4′‐TBBT in the two systems. It is inferred from the SERS signal that the two aromatic rings in 4,4′‐TBBT molecule are parallel to the colloidal silver surface as seen from the disappearance of νC H band (3054 cm−1), which is a vibrational mode to be used to determine the orientation of a molecule on metals according to the surface selection rule, while on the roughened silver electrode surface they are tilted to the surface as seen from the enhanced signal of νC H. The orientation of the C‐S bond is tilted with respect to the silver surface in both cases as inferred from the strong enhancement of the νC S. SERS spectra of 4,4′‐TBBT on the roughened silver electrode with different applied potentials reveal that the enhancement of 4,4′‐TBBT on the roughened silver electrode surface may be related to the chemical mechanism (CM). More importantly, the adsorption of 4,4′‐TBBT on the silver electrode is expected to be useful to covalently adsorb metal nanoparticles through the free S H bond to form two‐ or three‐ dimensional nanostructures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents, for the first time, noninvasive imaging of a livingplant using biocompatible carbon‐encapsulated Au Ag nanoparticles (NPs) using micro‐Raman spectroscopy (MRS). A convenient and controllable hydrothermal synthetic route was developed to synthesize the layer‐by‐layer triplex Au Ag C core–shell NPs, which can incorporate the reporter molecule 4‐mercapto benzoic acid (4‐MBA). A unique approach was devised to deliver the carbon‐encapsulated surface‐enhanced Raman scattering (SERS) tags into the leaf of Nicotiana benthamiana. In vivo SERS mapping was subsequently performed to monitor the distribution of tags inside the leaf, which successfully avoided interference of autofluorescence from plant tissue. The imaging modality reported here and further the bio‐functionalized carbon‐encapsulated SERS NPshold significant potential as a strategy forbiochemical imaging in living plantsin a noninvasive and nontoxic manner, whichmight open up exciting opportunities for plant sciences. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Transition‐metal‐doped semiconductor nanoparticles (NPs) have been well studied for their optical and catalytic properties but seldom studied by surface‐enhanced Raman scattering (SERS). In this paper, transition‐metal‐doped semiconductor NPs are investigated for their SERS property. Four groups of Co‐doped (0.5, 1, 3, and 5%) ZnO (Co ZnO) NPs and pure ZnO NPs were synthesized and studied. When 4‐mercaptobenzoic acid was used as probing molecule, significant SERS signals were obtained on all the five samples. Moreover, it is very interesting to observe a relationship between the Co‐doping concentration and enhancement of the SERS signals. SERS intensities first increase with doping concentration (up to 1%), and then decrease with further increase in doping concentration (up to 5%). Charge transfer (CT) is considered to be the main contribution to this phenomenon. Different CT ratios from substrates to molecules seem to induce different intensities of the SERS signals. In our experiments, the crystalline defects of Co ZnO NPs caused by the Co dopant affect the CT ratios. A possible mechanism of CT from the valance band of Co ZnO NPs to the lower unoccupied molecular orbital of the molecules via energy of the surface states is suggested. X‐ray photoelectron spectra, UV vis spectra, and Raman spectra were used to characterize the structure and defects in Co ZnO NPs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectra in solid and 1 M solution of L ‐cysteine and surface‐enhanced Raman scattering (SERS) spectra of this molecule in the zwitterionic form, by using colloidal silver nanoparticles, have been recorded. Density functional theory with the B3LYP functional was used for the optimizations of the ground state geometries and simulation of the vibrational spectrum of this amino acid. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman and SERS vibrations and the corresponding assignments, as well as a comparison of force constants and geometrical parameters between the free zwitterion cysteine and the one in the presence of the colloidal silver nanoparticles, we can confirm the presence of gauche (PH) and trans (PN) rotamers in the solid state, the formation of a S S bond in the solution state, the dissociation of the peptide bond and mixing of rotamers because of the SERS effect, and the relative importance of the interaction of sulphyldryl, NH3+, and carboxylate groups with the metallic surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The tetrasaccharide of 1 → 4β‐D‐mannopyranuronate (MM) and the alternating tetrasaccharide of 1 → 4 b‐D‐mannopyranuronate and 1 → 4α‐L‐gulopyranuronate (MG) were analyzed based on density functional theory (DFT) by employing the Gaussian 03 W package. The molecular geometries were fully optimized by using the Becke's three‐parameter hybrid exchange functional combined with Lee–Yang–Parr correlation functional (B3LYP) and using a 6‐31G(d,p) basis set. The calculated IR spectrum of MM presents a band at 1093 cm−1 for C C stretching vibration, which is in good agreement with the experimental observation (1096 cm−1) for the polymannuronate fraction obtained by partial hydrolysis of sodium alginate extracted from the hybrid brown seaweed Lessonia–Macrocystis. The calculated value at 826 cm−1for MM is in close agreement with the experimental value and confirms that this band is characteristic of polymannuronate blocks. Most of the bands in the IR spectrum are also present in the observed Raman spectrum of the polymannuronate fraction. The experimental IR spectrum of heteropolymeric fraction obtained by partial hydrolysis of sodium alginate shows absorbances similar to those calculated for the model tetrasaccharide (MG). Surface‐enhanced Raman scattering (SERS) allows differentiation between the homopolymeric and heteropolymeric fractions of sodium alginate. The SERS spectrum of the heteropolymeric fraction shows an enhanced signal at 731 cm−1which is present in the calculated Raman spectrum of the tetrasaccharide MG at 729 cm−1. This band is assigned to the ring‐breathing deformation of the β‐D‐mannopyranuronate and α‐L‐gulopyranuronate residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The adsorption modes of 4‐amino‐3‐hydrazino‐5‐mercapto‐1,2,4‐trizole (purpald) self‐assembled monolayers (SAMs) formed on SERS‐active silver and gold electrodes were comparatively studied using surface‐enhanced Raman scattering (SERS), and the self‐assembling procedures were investigated by the Raman mapping technique. Purpald SAMs adopted a titled orientation with S, N2 atoms anchoring to the silver electrode and the  N7H2 close to the surface, whereas purpald stood up on the gold electrode through S, N5 atoms and with  N8H2 adjacent to the surface. The density functional theory (DFT) at the level of B3LYP was performed to help explain their different adsorption behaviors on the silver and gold electrodes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Vibrational spectral analysis of the hydrogen‐bonded nonlinear optical (NLO) material p‐bromo acetanilide (PBA) was carried out using NIR‐FT‐Raman and FT‐IR spectroscopy. Ab initio molecular orbital computations were performed at HF/6‐31G (d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N H···O hydrogen bonding, which was substantiated by the natural bond orbital (NBO) analysis. The vibrational spectra confirm that the charge‐transfer interaction between the  NHCOCH3 group and—Br through phenyl ring is responsible for simultaneous strong IR and Raman activation of the ring mode 8a. Vibrational analysis indicates that the lowering of stretching wavenumbers of methyl group due to electronic effects simultaneously caused by induction and hyperconjugation is due to the presence of the oxygen atom. The presence of blue‐shifting H‐bonds of CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode, the strong activity of low‐wavenumber H‐bond stretching vibrations and the role of intramolecular charge transfer in making the molecule NLO active have been analyzed on the basis of the vibrational spectral features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
We recorded surface‐enhanced Raman scattering (SERS) spectra of metal‐string complexes Co3(dpa)4 Cl2 [di(2‐pyridyl)amido (dpa)], Ni3(dpa)4 Cl2 and the oxidized form of the Ni3 complex to determine their vibrational wavenumbers and to investigate their structures. For SERS measurements these complexes were adsorbed on silver nanoparticles in aqueous solution to eliminate the constraint of a crystal lattice and the complexes remain in thermal equilibrium. From our analysis of the vibrational normal modes we assigned the SERS lines at 242 and 276 cm−1 to Ni3 and Co3 symmetric‐stretching modes of the symmetric form. For Co3 (dpa)4Cl2 a Raman line at 383 cm−1 was assigned to the Co Co stretching mode of the unsymmetric form. The wavenumber of the Ni3 symmetric‐stretching mode of the oxidized form [Ni3(dpa)4]3+ is 274 cm−1, greater than that for neutral Ni3(dpa)4Cl2, in agreement with a prediction of delocalized molecular‐orbital theory that an electron is removed from an antibonding orbital after oxidation. The experimental data show that the SERS technique serves as an excellent tool to observe the variation of metal–metal bonding during an oxidation or reduction reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Chromium oxide gel material was synthesised and appeared to be amorphous in X‐ray diffraction study. The changes in the structure of the synthetic chromium oxide gel were investigated using hot‐stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot‐stage Raman spectra. Two bands were observed at 849 and 735 cm−1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O CrIII OH and O CrIII O. With temperature increase, the intensity of the band at 849 cm−1 decreased, while that of the band at 735 cm−1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O CrIII O units in the structure. A strongly hydrogen‐bonded water H O H bending band was found at 1704 cm−1 in the Raman spectrum of the chromium oxide gel; however, this band shifted to around 1590 cm−1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm−1 attributed to the thermal decomposed product Cr2O3. The use of the hot‐stage Raman spectroscopy enabled low‐temperature phase changes brought about through dehydration and dehydroxylation to be studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号