首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The chemical nature of the red pigment of Corallium rubrum (CR) has not yet been clearly identified. We have recorded the Raman spectra of CR, canthaxantin, and parrot feather, and we propose an interpretation with the help of quantum chemistry and of the effective conjugation coordinate theory, which accounts for the main Raman lines (ν1, ν2, ν3) as originating from the polyene backbone. In this study, two additional lines in the 1000 cm−1 range (ν4 and ν5) are considered as well as a series of overtones and combinations in the second order Raman spectrum (2000–3000 cm−1). Density Functional Theory calculations predict that, moving with successive methylation from a simple unsubstituted polyene chain with 9 C═C bonds (as psyttacofulvins) to a 9, 9′, 13, 13′ tetramethylated chain (as carotenoids), the geometric structures of the molecules and their Raman spectra show changes that can be rationalized if the effective conjugation coordinate theory is extended to account for mechanical confinement. This turns out to be a new concept that helps the interpretation of the Raman spectra of partially methylated conjugated oligoenes. Evidence is found that the main component of the pigment of CR does not posess a fully demethylated polyene chain (psyttacofulfine) nor a tetramethylated chain (carotenoid), thus indicating that the polyene chain is partially methylated. Because we consider resonance Raman spectra, the target of this study is the structure of the polyene backbone; no direct spectroscopic information can be obtained in this way on the chemical nature of the groups attached to both chain ends. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
High‐resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous‐wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM‐CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high‐resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviation of 0.54 × 10−3 and 0.36 × 10−3 cm−1, respectively. Due to the fact that the Raman scattering effect is weak, we did not perform in this contribution the line intensities analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
First and second‐order Raman spectra of B6O and their dependence on the wavelength of the excitation line from IR (infrared) to deep UV (ultraviolet) has been studied. The first‐order Raman spectra contain 11 well‐resolved lines of the 12 expected modes 5 A1g + 7 Eg (space group R‐3m, point group D3d). The second‐order Raman spectra contains eight lines that are resolved only in the case of the 244‐nm excitation line. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The Raman scattering spectra of uranium‐doped Ca2CuO3 were investigated. The small doping of uranium (≤5%) in this one‐dimensional spin 1/2 chain system induced three new first‐order scattering bands and two new multiphonon bands in the structure of forbidden phonons. The first‐order bands were found to agree well with the existing theoretical results from the ab initio and tight‐binding calculation. Among them, the 470 and 665 cm−1 bands appeared as the basic wavenumbers of which the multiphonon overtones were composed. The grain size effect in this strongly anisotropic system was proposed not to originate from the classical phonon confinement but rather as a result of the segmentation of one‐dimensional spin chains due to doping, which in turn allowed the new vibrational modes and implied the appearance of higher overtones in the scattering spectra. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The high‐resolution stimulated Raman spectra of the ν2 and ν3 bands of C2H4 have been recorded and analyzed separately by means of the tensorial formalism developed in Dijon and Reims for X2Y4 asymmetric‐top molecules. For the ν2 band, a total of 191 lines were assigned and fitted. We obtained a global root mean square deviation of 1.86 × 10− 3 cm− 1. For the ν3 band analyzed in interaction with the ν6 infrared band, a total of 185 lines were assigned and fitted. We obtained a global root mean square deviation of 1.29 × 10− 3 cm− 1. Both analyses lead to very satisfactory synthetic spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Polyenic pigments in octocorals have been investigated by Raman spectroscopy using laser excitation at 532, 785 and 1064 nm. The spectral features suggest the structural nature of carotenoids from Phyllogorgia dilatata, Leptogorgia punicea, Muricea atlantica, Carijoa riisei and conjugated polyenals from L. punicea, L. setacea, Muricea flamma and Renilla muelleri. The observed vibrational bands at ca. 1540–1520 ν1(C=C), 1159 ν2(C–C) and 1005 cm−1 ρ3(C–CH3) were assigned to carotenoids, whereas the identification of non‐methylated conjugated polyenals have been proposed due to two major Raman bands at ca. 1500 and 1120 cm‐1, assigned to ν(C=C) and ν(C–C), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The spectra of the ν1, 2ν1ν1, ν2, 2ν2, and 3ν2ν2 bands of CF4 were obtained with a quasi‐continuous wave stimulated Raman spectrometer. These five bands were studied at a temperature of 135 and 300 K (for the hot bands). The spectrum of ν1 was obtained at a sample pressure of 2 mbar. For the spectra of the other regions, which are much weaker, higher pressures were used. The analysis has been performed thanks to the xtds and spview softwares developed in Dijon for such highly symmetric molecules. Combining the present results with a previous infrared study, we could determine a very accurate value for the C–F equilibrium bond length, i.e. re = 1.31588(6) Å. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract: The relation between Raman scattering, resonance Raman scattering, and absorption is reviewed to determine to what extent quantitative analysis can be applied in resonance Raman spectroscopy. In addition, it is demonstrated experimentally that normal Raman spectra can be dramatically inhibited by absorption and resonance Raman effects. Raman spectra of toluene and heptane mixtures—with progressively increasing concentrations of heptane—were measured using 229-nm laser excitation. The results show that the characteristic band intensities are not directly proportional to the relative concentrations of the compounds and deviate due to absorption resonance effects. An approximated mathematical model is developed to demonstrate that the intensities of the normal Raman scattering bands are suppressed. An inhibition coefficient Ki is introduced to describe the situation and determine the penetration depth. Most remarkably, it is shown that the intensity of the resonance Raman scattering bands can be constant even when the concentration ratios differ substantially in the sampled mixtures.  相似文献   

11.
Infrared and Raman spectra of dideuterated acetylene containing one 13C atom, 13C12CD2, have been recorded and analysed to obtain detailed information on the fundamental ν 2 band and associated combination and hot bands. Infrared spectra were recorded at 4?×?10?3?cm?1 resolution in the region 1150?2900?cm?1, which contains combination and hot bands from the ground and the bending v 4?=?1 and v 5?=?1 states. The Q-branches of the ν 2 fundamental and associated hot bands (ν 2?+?ν 4???ν 4, ν 2?+?ν 5???ν 5, ν 2?+?2ν 4???2ν 4, ν 2?+?2ν 5???2ν 5 and ν 2?+?ν 4?+?ν 5???(ν 4?+?ν 5)) were recorded using inverse Raman spectroscopy, with an instrumental resolution of about 3?×?10?3?cm?1. In addition, the observation of the 2ν 2???ν 2 Raman band was carried out populating the v 2?=?1 state by stimulated Raman pumping. In total, 11 Raman and 9 infrared bands were analysed, involving all the l-vibrational components of the excited stretching?bending manifolds up to v t ?=?v 4?+?v 5?=?2.

A simultaneous analysis of all infrared and Raman assigned transitions has been performed on the basis of a theoretical model which takes into account the rotation and vibration l-type resonances within each vibrational manifold and the Darling?Dennison anharmonic resonance between the ν 2?+?2ν 4 and ν 2?+?2ν 5 states. The parameters obtained reproduce the assigned transition wavenumbers with a standard deviation of the same order of magnitude as the experimental uncertainty.  相似文献   

12.
Infrared (IR) and Raman spectra were obtained for N,N′‐dicyclohexylcarbodiimide (DCC) in the solid state and in CHCl3 solution. Structures and vibrational spectra of isolated, gas‐phase DCC molecules with C2 and Ci symmetries, computed at the B3‐LYP/cc‐pVTZ level, show that the IR and Raman spectra provide convincing evidence for a C2 structure in both the solid state and in CHCl3 solution. Using a scaled quantum‐chemical force field, these density functional theory calculations have provided detailed assignments of the observed IR and Raman bands in terms of potential energy distributions. Comparison of solid‐state and solution spectra, together with a Raman study of the melting behaviour of DCC, revealed that no solid‐state effects were evident in the spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Two hydrated hydroxy magnesium carbonate minerals brugnatellite and coalingite with a hydrotalcite‐like structure were studied by Raman spectroscopy. Intense bands are observed at 1094 cm−1 for brugnatellite and at 1093 cm−1 for coalingite attributed to the CO32−ν1 symmetric stretching mode. Additional low intensity bands are observed at 1064 cm−1. The existence of two symmetric stretching modes is accounted for in terms of different anion structural arrangements. Very low intensity bands at 1377 and 1451 cm−1 are observed for brugnatellite, and the Raman spectrum of coalingite displays two bands at 1420 and 1465 cm−1 attributed to the (CO3)2−ν3 antisymmetric stretching modes. Very low intensity bands at 792 cm−1 for brugnatellite and 797 cm−1 for coalingite are assigned to the CO32− out‐of‐plane bend (ν2). X‐ray diffraction studies by other researchers have shown that these minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described. A comparison is made with the Raman spectra of other hydrated magnesium carbonate minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The high‐resolution stimulated Raman spectra of the ν1/ν5 C–H stretching bands of C2H4 have been recorded and analyzed by means of the tensorial formalism developed in Dijon for X2Y4 asymmetric‐top molecules. A total of 689 lines (428 for ν5 and 261 for ν1) were assigned and fitted as a dyad including Coriolis coupling constants. We obtained a global root mean square deviation of 4.39 × 10− 3 cm− 1 (4.61 × 10− 3 cm− 1 for ν1, 4.25 × 10− 3 cm− 1 for ν5). The nearby 2ν2 band, extrapolated from ν2, was included in the analysis. However, no interaction parameter involving it could be fitted. The analysis is quite satisfactory, although some parts of ν5 are not very well reproduced, probably indicating some yet unidentified resonances. This region is indeed quite dense, with many interacting dark states that cannot be included at present. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

17.
We report a resonance Raman study on free‐base tetraphenylporphine (H2TPP) and its chemically prepared diacid dispersed in polymethylcyanoacrylate (PMCA). Photoexcitation of the neutral porphine by laser light leads irreversibly to the formation of the diacid, with the π‐cation radical as intermediate species. Resonance Raman (RR) spectra of the diacid dispersed in the polymer obtained with 441.6 nm in the wavenumber region of 100–1650 cm−1 are recorded. Wavenumbers with other excitation lines are also reported for the diacid species. Some bands assigned to out‐of‐plane vibrational modes and forbidden under ideal D2h symmetry are also observed in the resonance Raman spectra of the diacid. These bands arise from the out‐of‐plane distortions, which reduce the symmetry of the molecule. These findings are supported by the electronic absorption studies of the diacid in the polymer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The most obvious consequence of the concept of aromaticity is the common confidence that in aromatic compounds, bond lengths do not alternate and are between typical to the single and double ones. However, in 1994, performing crystal structure investigations of substituted pyridines and their salts, Krygowski and co‐workers have discovered a very surprising angular group induced bond alteration (AGIBA) effect: It appears that some angular substituents, like methoxy or nitrozo groups, can induce bond alternation in aromatic rings. Crystal studies do not allow one to operate with liquids that are more common in organic chemistry. This paper presents the first possible evidence of spectroscopic manifestations of the AGIBA effect. Raman spectra of the liquid toluene are analyzed. It is found that instead of being single, the line corresponding to the ring breathing vibrations is clearly split by 1.0–1.4 cm?1, thus indicating the presence of two (cis‐ and trans‐) AGIBA isomers. The energy difference between these isomers estimated in temperature dependent Raman studies is found equal to 6.68 kJ mol?1. The low‐wavenumber line therefore corresponds to the cis‐AGIBA isomer and the high‐wavenumber line to the trans‐AGIBA isomer stabilized by the AGIBA effect. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Resonant Raman scattering spectra of ultrasmall (<2 nm) magic‐size nanocrystals (NCs) are reported. The spectra of CdS and CdSx Se1‐x NCs, resonantly excited with 325 nm and 442 nm laser lines, correspondingly, reveal broad features in the range of bulk optical phonons. The relatively large width, ~50 cm‐1, and downward shift, ~20 cm‐1, of the Raman bands with respect to the longitudinal optical phonon in bulk crystals and large NCs are discussed based on the breaking of the translational symmetry and bond distortion in these ultrasmall NCs. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Histidine is an important and versatile amino acid residue that plays a variety of structural and functional roles in proteins. Although the Raman bands of histidine are generally weak, histidine in the N‐deuterated cationic form with imidazole Nπ D and Nτ D bonds (N‐deuterated histidinium) gives two strong Raman bands assignable to the C4C5 stretch (νCC) and the Nπ C2 Nτ symmetric stretch (νNCN) of the imidazole ring. We examined the Raman spectra of N‐deuterated histidinium in 12 crystals with known structures. The observed νCC and νNCN wavenumbers were analyzed to find empirical correlations with the conformation and hydrogen bonding. The effect of conformation on the vibrational wavenumber was expressed as a threefold cosine function of the Cα Cβ C4C5 torsional angle. The effect of hydrogen bonding at Nπ or Nτ was assumed to be proportional to the inverse sixth power of the distance between the hydrogen and acceptor atoms. Multiple linear regression analysis clearly shows that the conformational effect on the vibrational wavenumber is comparable for νCC and νNCN. The hydrogen bond at Nπ weakly lowers the νCC wavenumber and substantially raises the νNCN wavenumber. On the other hand, the hydrogen bond at Nτ strongly raises the νCC wavenumber but does not affect the νNCN wavenumber. These empirical correlations may be useful in Raman spectral analysis of the conformation and hydrogen bonding states of histidine residues in proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号