共查询到20条相似文献,搜索用时 15 毫秒
1.
Mihaela Baibarac Ioan Baltog Lucian Mihut Serge Lefrant 《Journal of Raman spectroscopy : JRS》2014,45(5):323-331
Surface‐enhanced Raman scattering studies were performed using nonresonant (514.5 nm) and resonant (676.4 nm) optical excitations on single‐walled carbon nanotubes thoroughly separated into semiconducting (pure 99%) and metallic (pure 98%) components. Regardless of the support (Au or Ag), the metallic nanotubes do not present an anomalous anti‐Stokes Raman emission. Regardless of whether an on‐resonant or off‐resonant optical excitation is used, only the semiconducting nanotubes produce an abnormal anti‐Stokes Raman emission that grows when increasing the excitation light intensity or temperature. The Raman studies under light polarized relative to the main nanotube axis demonstrate that only semiconducting nanotubes are sensitive toward changes in the polarization of the excitation light. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
S. Santangelo G. Messina G. Faggio M. Lanza C. Milone 《Journal of Raman spectroscopy : JRS》2011,42(4):593-602
Commercially available and laboratory‐prepared multi‐walled carbon nanotubes (MWCNTs) are systematically investigated by the use of micro‐Raman spectroscopy (MRS), thermogravimetric analysis (TGA) and complementary techniques (scanning electron microscopy (SEM) and transmission electron microscopy (TEM)) with the aim of establishing a standardised post‐growth diagnostic protocol for the assessment of their overall crystalline quality. By studying a set of ‘reference’ samples, clear correlations are evidenced between the Raman graphitisation indexes (D/G, G′/G and G′/D intensity ratios) commonly adopted to describe the crystalline arrangement of nanotubes, and their reactivity towards oxygen, as measured by the apparent activation energy needed for their oxidation, inferred from the kinetic analysis in quasi‐isothermal conditions. The higher the crystalline perfection degree, the higher the energy needed for oxidising them. The efficacy of the found correlations in indirectly assessing the reactivity of nanotubes prepared under different conditions is successfully demonstrated by the use of a second set of samples. The physical meaning and range of validity of the shown correlations are further discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Shuangchen Lu Mingguang Yao Quanjun Li Hang lv Dedi Liu Bo Liu Ran Liu Linhai Jiang Zhen Yao Zhaodong Liu Bo Zou Tian Cui Bingbing Liu 《Journal of Raman spectroscopy : JRS》2013,44(2):176-182
High‐pressure Raman measurements on single‐wall carbon nanotubes (SWNTs) have been carried out in a diamond anvil cell by using two wavelength lasers: 830 and 514.5 nm. Irrespective of using a pressure transmitting medium (PTM) or not, we found that nanotubes undergo similar transformations under pressure. The pressure‐induced changes in Raman signals at around 2 and 5 GPa are attributed to the nanotube cross‐section transitions from circle to ellipse and then to a flattened shape, respectively. Especially with pressure increasing up to 15–17 GPa, we observed that the third transition takes place in both the Raman wavenumber and the linewidth of G‐band. We propose explanations that the interlinked configuration with sp3 bonds forms in the bundles of SWNTs under pressure, which was the cause for the occurrence of those Raman anomalies, similar to the structural‐phase transition of graphite above 14 GPa. Our TEM observations and Raman measurements on the decompressed samples support this transition picture. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
5.
对不同激发波长下单壁和多壁碳纳米管的激光拉曼光谱进行了比较。发现单壁碳纳米管D峰强度和G峰强度的比值(ID/IG)几乎不随激发光子能量的改变而变化,多壁碳纳米管ID/IG值随着激发光子能量的增加以斜率0 3/eV减小。并对此现象进行了初步的分析。此外,还发现在1064nm激发波长下,单壁和多壁碳纳米管2500-3500cm-1之间拉曼峰的相对强度随着入射激光功率的增加而增加。 相似文献
6.
Mihaela Baibarac Ioan Baltog Adelina Matea Lucian Mihut Serge Lefrant 《Journal of Raman spectroscopy : JRS》2015,46(1):32-38
Although Raman spectra reveal, as a signature of double‐walled carbon nanotubes (DWCNTs), two radial breathing mode (RBM) lines associated with the inner and outer tubes, the specification of their nature as metallic or semiconducting remains a topic for debate. Investigating the spectral range of the RBM lines, we present a new procedure of the indexing of the semiconducting or metallic nature of the inner and outer shell that forms the DWCNT. The procedure exploits the difference between the intensities of recorded anti‐Stokes Raman spectrum and the anti‐Stokes spectrum calculated by applying the Boltzmann formulae to the recorded Stokes spectrum. The results indicate that the two spectra do not coincide with what should happen in a normal Raman process, namely, that there are RBM lines of the same intensity in both spectra, as well as RBM lines of higher intensity that are observed in the calculated spectrum. This discrepancy results from the surface‐enhanced Raman scattering mechanism that operates differently on metallic or semiconducting nanotubes. In this context, the analysis of the RBM spectrum can reveal pairs of lines associated with the inner/outer shell structure of DWCNT, and when the intensities between the recorded and calculated spectra coincide, the nanotube is metallic; otherwise, the nanotube is semiconducting. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
Sebastian Heeg Nick Clark Antonios Oikonomou Aravind Vijayaraghavan Stephanie Reich 《固体物理学:研究快报》2014,8(9):785-789
We report plasmon‐enhanced Raman scattering of the order of 103 by a metallic carbon nanotube partially suspended inside a near‐field cavity. The tube is part of a small bundle, and is interfaced with an Au nanodisc dimer using a recently developed assembly scheme based on dielectrophoretic deposition. Spatially resolved Raman measurements with two excitation wavelengths and two orthogonal polarizations confirm that the enhancement arises from a 65 nm long suspended tube segment. We show that the orientation of the tube inside the cavity can be as effective for generating enhancement as placing the nanotube precisely in a plasmonic hotspot. Position and shape of the G‐peak show that the suspended part of the tube is free of strain and doped with a Fermi energy shift ≤40 meV. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
8.
Theoretical calculations predict that the collapse pressure for double-walled carbon nanotubes (DWCNTs) is proportional to 1/R 3, where R is the effective or average radius of a DWCNT. In order to address the problem of CNT stability at high pressure and stress, we performed a resonance Raman study of DWCNTs dispersed in sodium cholate using 532 and 633 nm laser excitation. Raman spectra of the recovered samples show minor versus irreversible changes with increasing I D/I G ratio after exposure to high non-hydrostatic pressure of 23 and 35 GPa, respectively. The system exhibits nearly 70% pressure hysteresis in radial breathing vibrational mode signals recovery on pressure release which is twice that predicted by theory. 相似文献
9.
We review recent experimental and theoretical studies on the radiative properties of excitons in single‐walled carbon nanotubes (SWNTs) as a function of magnetic field and temperature. These studies not only provide new insight into the fundamental properties of excitons in the ultimate one‐dimensional (1D) limit but also reveal new phenomena associated with the unique crystal and electronic structure of SWNTs. During the past several years, SWNTs have emerged as one of the most ideal systems available for the systematic study of 1D excitons, which are predicted to possess a set of properties that are distinctly different from excitons in higher dimensions. In addition, their tubular nature allows them to exhibit non‐intuitive quantum phenomena when subjected to a parallel magnetic field, which breaks time reversal symmetry and adds an Aharonov‐Bohm phase to the electronic wavefunction. In particular, a series of recent experiments demonstrate that such a symmetry‐breaking magnetic field can dramatically “brighten” an optically‐inactive, or dark, exciton state at low temperature (see the title figure on the right). We show that this phenomenon, magnetic brightening, can be understood as a consequence of interplay between the strong intervalley Coulomb mixing and field‐induced lifting of valley degeneracy. Detailed temperature‐dependent photoluminescence studies of excitons in SWNTs in a varying magnetic field have thus provided one of the most critical tests for recently proposed theories of 1D excitons taking into account the strong 1D Coulomb interactions and unique band structure on an equal footing. Furthermore, results of these studies suggest the intriguing possibility of manipulating the optical properties of SWNTs by judicious symmetry control, which can lead to novel devices and applications in lasers and optoelectronics. 相似文献
10.
Gustavo M. do Nascimento Tilana B. Silva Paola Corio Mildred S. Dresselhaus 《Journal of Raman spectroscopy : JRS》2010,41(12):1587-1593
Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at Elaser = 1.17 eV suggest that a charge‐transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
S. Santangelo G. Messina G. Faggio S. H. Abdul Rahim C. Milone 《Journal of Raman spectroscopy : JRS》2012,43(10):1432-1442
Liquid phase functionalisation of carbon nanotubes is carried out via a H2SO4 + HNO3 mixture, and the effect of the sulphuric to nitric acid volume ratio (1:3–3:1) is systematically investigated by means of complementary techniques, observing the expected progressive downgrade of the crystalline quality, along with the increase of oxygenated functionality concentration. In addition, in contrast with common expectations, the results obtained demonstrate that the concentration of carboxylic groups (acids and anhydrides) never exceeds that of all other functionalities (lactones, phenols, quinones/carbonyls and sulphonic groups) introduced by chemical oxidation. Only by using equal volumes of sulphuric and nitric acids the concentrations of carboxylic and non‐carboxylic groups become comparable. Raman analysis reveals that a change in the sample homogeneity accompanies the variations of the relative proportions of the various oxygenated groups, by the typology of which the vibration modes of carbon pairs and carbon rings appear to be affected to different extents. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
H. M. Heise R. Kuckuk A. K. Ojha A. Srivastava V. Srivastava B. P. Asthana 《Journal of Raman spectroscopy : JRS》2009,40(3):344-353
Multi‐walled carbon nanotube (MWCNT) filters have been recently synthesised which have specific molecular filtering capabilities and good mechanical strength. Optical and scanning electron microscopy (SEM) reveals the formation of highly aligned arrays of bundles of carbon nanotubes having lengths up to 500 µm. The Raman spectra of this material along with four other carbonaceous materials, commercially available single‐walled carbon nanotubes (SWCNTs) and MWCNTs, graphitised porous carbon (Carbotrap) and graphite have been recorded using two‐excitation wavelengths, 532 and 785 nm, and analysed for band positions and shape with special emphasis paid to the D‐, G‐ and G′‐bands. A major difference between the different MWCNT varieties analysed is that G‐bands in the MWCNT filters exhibit almost no dispersion, whereas the other MWCNTs show a noticeable dispersive behaviour with a change in the excitation wavelength. Spectral features similar to those of the MWCNT filter varieties were observed for the Carbotrap material. From the line shape analysis, the intensity ratio, ID/IG, of the more ordered MWCNT filter material using the integral G‐band turns out to be two times lower than that of the less ordered MWCNT filter product at both excitation wavelengths. This parameter can, therefore, be used as a measure of the degree of MWCNT alignment in filter varieties, which is well supported also by our SEM study. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects 下载免费PDF全文
Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate. 相似文献
14.
Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy 下载免费PDF全文
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice. 相似文献
15.
Debasish Ghosh Pradip Ghosh Mohd Zamri Yusop Masaki Tanemura Yasuhiko Hayashi Tetsuo Tsuchiya Tomohiko Nakajima 《固体物理学:研究快报》2012,6(7):303-305
A fully transparent and flexible field emission device (FED) has been demonstrated. Single‐walled carbon nanotubes (SWCNTs) coated on arylite substrate were used as electron emitters for the FED and a novel metavanadate phosphor coated on the SWCNTs/arylite film was used as transparent and flexible screen. The SWCNTs/arylite based emitters and the SWCNTs/arylite/metal‐vanadate‐based phosphor showed a transmittance value of 92.6% and 54%, respectively. The assembled device also showed satisfactory transparency and flexibility as well as producing significant current. Metavanadate phosphor is considered to be an excellent candidate due to its superior luminescence properties and easy fabrication onto transparent and flexible conductive substrate at room temperature while retaining reasonable transparency of the substrate. Thus, its transparency and flexibility will open the door to next‐generation FEDs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
S. Scalese V. Scuderi S. Bagiante I. Deretzis A. La Magna C. Bongiorno G. Compagnini S. Gibilisco N. Piluso V. Privitera 《Journal of Raman spectroscopy : JRS》2012,43(8):1018-1023
Multi‐wall carbon nanotubes (MWCNTs) produced by the arc discharge between two graphite rods in liquid nitrogen have been investigated with the use of Raman spectroscopy and transmission electron microscopy (TEM). The effects of the applied voltage on the structural properties of the produced MWCNTs have been observed, in particular, as it concerns the size of the innermost and outermost diameters. The apparent discrepancies observed between the Raman and TEM results are explained through the observation of a selective response of the MWCNTs to the excitation laser energy in Raman spectroscopy, similar to the case of single‐wall CNTs. Electronic structure calculations correlate such behavior with optical transitions, in the presence of strong electronic localizations, spatially confined in a few neighboring walls. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
We use 488 and 568 nm laser Raman spectroscopy under high pressure to selectively follow evolution of Raman G-mode signals of single-walled carbon nanotubes (SWCNTs) of selected diameters and chiralities ((6, 5) and (6, 4)). The G-mode pressure coefficients of tubes from our previous work are consistent with the thick-wall tube model. Here we report the observation of well-resolved G-minus peaks in the Raman spectrum of SWCNTs in a diamond-anvil cell. The pressure coefficients of these identified tubes in water, however, are unexpected, having the high value of over 9 cm?1 GPa?1 for the G-plus and the G-minus, and surprisingly the shift rates of the same tubes in hexane have clearly lower values. We also report an abrupt increase of G-minus peak width at about 4 GPa superposed on a continuous peak broadening with pressure. 相似文献
19.
Metallic single‐walled carbon nanotubes (m‐SWCNTs) with excellent conductivity and transparency are considered to be eminent electrode materials. However, it still remains a challenge to separate m‐SWCNTs by their diameters. As reported in this Letter, by effective purification treatment of SWCNTs, we succeeded in achieving diameter separation of m‐SWCNTs using gel column chromatography. TEM and Raman characterizations revealed that metal catalysts and amorphous carbon on tube surfaces were largely reduced, which contributed to the diameter separation of m‐SWCNTs.
20.
Xianqing Liang Jun Zhong Yu Wang Ting Zhao Peng Yao Wangsheng Chu Kurash Ibrahim Haijie Qian Ziyu Wu 《Journal of synchrotron radiation》2009,16(3):428-431
X‐ray absorption near‐edge structure (XANES) spectroscopy has been applied to identify the modification process of single‐walled carbon nanotubes (SWCNTs) treated by nitric acid. The carboxyl groups created by the nitric acid treatment have been found to be formed on both the carbonaceous fragments and the side walls of SWCNTs. The carbonaceous fragments could be removed by a following washing treatment with sodium hydroxide. XANES spectra indicate that carbonaceous fragments are the result of the synthesis process and/or of the nitric acid treatment. Tube walls of SWCNTs are weakly oxidized by the nitric acid treatment although, after removing carbonaceous fragments, a direct oxidation process of SWCNTs is observed. Experimental data address the removal of carbonaceous fragments on SWCNTs as an efficient method for side‐wall modification of a SWCNT. 相似文献