首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
A novel polyoxometalate [Ni(bpy)3]2[W4V2O19] (Ni2V2W4) has been synthesized by the hydrothermal method and the structure determined by X‐ray crystallography. Ni2V2W4 crystallizes in a trigonal system with space group R ‐3c (a = 15.8984 (5) Å, b = 15.8984 (5) Å, c = 43.855 (3) Å). In the structure of the compound, terminal and bridging oxygen atoms are bond to the metal centers by σ or π bonds. The W6+ and V5+ ions in isopolyanion [W4V2O19]4‐ statistically distribute over the six metal centers. Using cathodic adsorptive voltammetric method with a carbon paste electrode, the redox property and the electron transferring process were studied. The results show that electrochemical behavior about W(VI) and V(V) atoms give one‐electron, three‐electron and two‐electron reduction waves. Three successive oxidation waves are observed too. The compound was also characterized by thermal gravimetric analysis and IR spectra. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Synthesis and crystal structure are described for pyridinium isopolymolybdate of chemical composition (C5H6N)2n[Mo4O13]n. The crystals are triclinic, space group P1, with the following unit‐cell parameters: a =8.2695(11) Å, b =10.544(4) Å, c =11.177(4) Å, α = 71.76(5)°, β = 89.68(3)°, γ = 78.79(3)°, V =906.4(4) Å3, Z = 2 (chemical formula (C5H6N)2[Mo4O13]), D calcd = 2.755 g·cm–3. Crystal structure was solved by Patterson methods and refined to a final R value 0.085 for 4045 independent reflections. The studied compound, considered in analogy to triclinic (NH4)2Mo4O13 as pyridinium polyoctamolybdate, is proposed to be better described as pyridinium isopolytetramolybdate (C5H6N)2n[Mo4O13]n. It seems that the proper coordination number of molybdenum (VI) ions is five, resulting in pyramidal coordination polyhedra [MoO5]. Coordination polyhedra joined by common edges form tetramolybdate monomeric unit [Mo4O13]. The mers are connected by oxygen bridges Mo ‐ O ‐ Mo into infinite ribbon chains. Each two infinite chains are hold together by weaker intermolecular interactions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The N‐N dimethyl benzylammonium tetrachlorothallate (III) [C6H5CH2NH(CH3)2]TlCl4 crystallizes in the monoclinic system P21/n at room temperature with the following unit cell dimensions: a = 7.725(3) Å, b = 14.080(5) Å, c = 13.697(4) Å, β = 91.2(2)° with Z = 4. The structure shows a layer arrangement perpendicular to the b axis: planes of [TlCl4] tetrahedra alternate with planes of [C6H5CH2NH(CH3)2]+ cations. The cohesion of the atomic arrangement is ensured by hydrogen bonds N‐H…Cl. Differential scanning calorimetric and optical birefringence measurements reveals a phase transition at T = 339K. Raman spectroscopic study and dielectric measurements were performed to discuss the mechanism of the phase transition. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Single crystals of (4‐ClC7H6NH3)9[Nd(P6O18)2]·9H2O were synthesized in aqueous solution. This compound crystallizes in a triclinic P1 unit‐cell, with a = 14.898(6), b = 18.049(7), c = 20.695(6)Å, α = 102.04(3), β = 100.49(3), γ = 98.82(3)°, V = 5245(4) Å3 and Z = 2. The crystal structure has been solved and refined to R = 0.043 (Rw = 0.061) for 20420 observed reflections. The atomic arrangement of the title compound can be described as infinite layers built by complex of Neodyme [Nd(P6O18)2] and nine water molecules. The organic cations are located in the space delimited by the successive inorganic layers. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The crystal structure of [{Co(phen)2}2V4O12] · H2O consists of hexanuclear bimetallic clusters [{Co(phen)2}2V4O12]. The cyclic [V4O12]4‐ anion acts as a bidentate bridging ligand between the two [Co(phen)2]2+ cations. The π‐π stacking interactions between the parallel 1,10‐phenantroline (phen) groups play a significant role in stabilizing this structure. The title compound crystallizes in the P21/c space group.  相似文献   

6.
Single‐crystals of the polar compound magnesium hydrogen vanadate(V), Mg13.4(OH)6(HVO4)2(H0.2VO4)6, were synthesized hydrothermally. It represents the first hydrogen vanadate(V) among inorganic compounds. Its structure was determined by single‐crystal X‐ray diffraction [space group P 63mc, a = 12.9096(2), c = 5.0755(1) Å, V = 732.55(2) ų, Z = 1]. The crystal structure of Mg13.4(OH)6(HVO4)2(H0.2VO4)6 consists of well separated, vacancy‐interrupted chains of face sharing Mg2O6 octahedra, with short Mg2—Mg2 distances of 2.537(1) Å, embedded in a porous magnesium vanadate 3D framework having the topology of the zeolite cancrinite. All three hydrogen positions in the structure were confirmed by FTIR spectroscopy. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The hydrothermal reaction of a mixture of VOSO4 · xH2O, 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid) and 0.1 M H2SO4 for 72 h at 160 °C gives blue needle like crystals of [VIV 2O2(H2O)2(C6H2(COO)4)] in 30% yield. The compound has a porous 3-D extended network structure having a rigid architecture which is held together by the multidentate functionalities of 1,2,4,5-benzenetetracarboxylate ligand. Crystal data for the compound: monoclinic space group C 2/c (No:15), a = 11.756(5) ?, b = 9.645(3) ?, c = 11.822(7) ?, β = 107.10(4)°, Z = 8. The compound constitutes the first example of a fully reduced oxovanadium based solid incorporating the organic ligand. This article consists of synthesis, crystal structure and characterization of [VIV 2O2(H2O)2(C6H2(COO)4)].  相似文献   

8.
The crystal and molecular structure of the title complex, C18H19N2O2Ni, has been determined by direct methods. The compound crystallizes in the monoclinic crystal system witha=22.973(1),b=5.212(1),c=27.076(1)Å, β=106.46(1)°, space groupC2/c,V=3109.1(6)Å3, Z=8, andD x=1.51g cm?3. The nickel atom is in a slightly distorted square-planar environment of two oxygens [Ni(1)?O(1) 1.824(3) and Ni(1)?O(2) 1.856(3)Å] and two nitrogens [Ni(1)?N(1) 1.849(3) and Ni(1)?N(2) 1.932(3)Å] with O?Ni?N angles between 85.7(1) and 97.1(1)°. The nickel atom is 0.006 Å out of the plane of its ligands.  相似文献   

9.
The tensor of nonlinear optical susceptibility for second harmonic generation [dSHG ijk ] of hexagonal (point group 6) strontium tartrato‐antimonate(III) dihydrate, Sr[Sb2{(+)‐C4H2O6}2]·2H2O, was determined using the Maker fringes method and a Nd:YAG laser with a wavelength of 1064 nm. The largest component of the tensor dSHG 333 amounts two times dSHG 111 of α‐quartz. Effective nonlinear optical susceptibility dSHG eff is given for phase matching type I for several wavelengths (for type II dSHG eff is nearly zero). The thermal stability of crystals of Sr[Sb2{(+)‐C4H2O6}2]·2H2O was determined in the temperature range from 153 K to 573 K by means of thermal expansion measurements and thermogravimetry. The temperature dependence of thermal expansion coefficients is given in the range from 153 K to 293 K. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The title compound (C7H6N4O5) crystallizes in the monoclinic space group P21/c with a=8.566(1) Å, b=14.493(3) Å, c=7.583(1) Å, β=87.75(1)°, V=940.7(3) Å3, Z=4, Dx=1.597 g.cm‐3. The structure was solved by direct methods and refined by full‐matrix least‐squares method (R=0.0696). The title compound consists of an imidazole ring with the two NO2 groups and one water molecule. The short inter‐ molecular N‐HN [2.03(5) Å] and Owater‐HO [1.98(5) Å] hydrogen bonds are highly effective in holding the molecule in a stable state as a whole.  相似文献   

11.
The inclusion of 3d‐impurities Mn(II), Co(II), Ni(II) and Cu(II) in a crystalline precipitate of ZnC2O4·2H2O is investigated. This study is a part of the systematic one deal with the mechanism of inclusion of 3d‐ions in sparingly soluble oxalate systems. The experiments are carried out in bi‐ end multi‐component systems at two different mediums – one with deficiency of oxalate ions, another with excess. The insertion of 3d‐ions upon mass crystallization of ZnC2O4·2H2O does not proceed by a simple ionic substitution. The results show that the inserted amount of impurity depends on some physicochemical characteristics of the neutral monooxalato complexes [MnC2O4]o, [CoC2O4]o, [NiC2O4]o and [CuC2O4]o. Good agreement between included impurity and the concentration of its complex in the solution is established. The stability constant of monooxalato complex affects the impurity inclusion. This effect depends on the medium nature. In the deficiency of oxalate ions the factor determining the inclusion is thermodynamic one – stability of monooxalato complexes. In the excess of oxalate ions inserted amount depends on kinetic factor – the formation rate of these complexes. In the term of that the insertion of Mn(II) is definitely different in the two mediums while that of the Ni (II) does not depend on the medium. The copper shows deviation from overall dependence in the two mediums due to the Jahn‐Teller distortion. Its double decreasing insertion in the excess of oxalate ions is related with stabilization of [Cu(C2O4)2]2‐. The conclusions presume that by varying the background medium and taking in view the ions present in the solution, the amount of inserted impurities can be predicted and controlled. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A new organic-inorganic hybrid γ-octamolybdate complex, (NH4)4[(C3H7NO)2Mo8O26]·2CH3CH2OH·2H2O was synthesized from the mixture of ethanol, DMF, 4-aminobenzoic acid, (NH4)6Mo7O24·4H2O, HCl and H2O. The structure was determined by X-ray crystallography. It crystallizes in monoclinic P21/n space group with the crystal cell parameters of a = 8.8825(4), b = 21.1608(10), c = 11.1343(6) ?, β = 104.7720(10)°, V = 2023.64(17) ?3 and Z = 2. The crystal X-ray analysis shows that two DMF molecules are bound to γ-octamolybdate anion. The molecular structure is stabilized by the complex hydrogen bonding.  相似文献   

13.
The title compound (C14H10N2O2Cl2) crystallizes in the monoclinic space group P21/a with a=10.042(1) Å, b=10.317(1) Å, c=13.877(2) Å, β=97.36(2)°, V=1425.8(3) Å3, Z=4, Dx=1.44 g.cm‐3. The structure was solved by direct methods and refined by full‐matrix least‐squares method (R = 0.0457). The title molecule consists of 3,4‐dichlorophenylamino and 2‐phenyl‐1,2‐ethanedione‐1‐oxime groups. The intermolecular O‐H…N and N‐H…O hydrogen bonds [O…N 2.760(6) and 3.087(5) Å] are highly effective in forming the polymeric chains. The oxime group has an E configuration. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Three heteroacidoligand uranyl complexes M 4[(UO2)2C2O4(SO4)2(NCS)2] (M = K+ (I), Rb+ (II)) and K4[(UO2)2C2O4(SeO4)2(NCS)2] (III) have been synthesized and their crystal structure has been determined by X-ray diffraction analysis. The compounds I–III are isostructural and crystallized in the monoclinic system, sp. gr. P21/c, Z = 2, a = 11.5548(3) ?, b = 7.0847(1) ?, c = 13.5172(3) ?, β = 93.130(1)°, V = 1104.90(4), R = 0.015 (I); a = 11.5854(9) ?, b = 7.3841(6) ?, c = 13.9072(9) ?, β = 95.754(3)°, V = 1183.74(15), R = 0.0235 (II); a = 11.6715(3) ?, b = 7.1418(2) ?, c = 13.8546(1) ?, β = 93.539(1)°, V = 1152.66(5), R = 0.0126 (III). Basic structural units of these crystals are [(UO2)2C2O4(XO4)2(NCS)2]4− chains, which belong to the crystallochemical group A 2 K 02 B 22 M 21 (A = UO22+, K 02 = C2O2−4, B 2 = SO42− or SeO42−, M 1 = NCS) of uranyl complexes. Uranium-containing chains are connected into a 3D framework via a system of electrostatic interactions with potassium or rubidium cations from outer spheres. Original Russian Text ? I.V. Medrish, E.V. Peresypkina, A.V. Virovets, L.B. Serezhkina, 2008, published in Kristallografiya, 2008, Vol. 53, No. 3, pp. 495–498.  相似文献   

15.
The compound [Fe(C4H6N2)6][C5H4NSO3]2 crystallized in the monoclinic space group, P21/n with unit cell parameters: a = 13.676(3), b = 8.345(2), c = 18.663(4) Å, = 106.40(3)° and Z = 2. The title compound consists of a [Fe(C4H6N2)6]+2 hexacoordinated iron(II) cation and two C5H4NSO 3 anions. In the cation the iron atom is coordinated to six N-methylimidazole imine nitrogen atoms in a distorted octahedral arrangement. The N1,N5,N1i,N5i atoms are coplanar and the iron lies in this plane.  相似文献   

16.
Compound (CN3H6)2[(UO2)2(C2O4)(CH3COO)4] is synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction [a = 8.5264(2) Å, b = 13.8438(4) Å, c = 10.7284(2) Å, β = 103.543(1)°, space group P21/n, Z = 2, and R = 0.0258]. The main structural units of the crystals are binuclear [(UO2)2C2O4(CH3COO)4]2? groups, which belong to the A 2 K 02 B 4 01 crystal chemical group of uranyl complexes (A = UO 2 2+ , K 02 = C2O 4 2? , and B 01 = CH3COO?). The coordination polyhedron of the uranium atom is the UO8 hexagonal bipyramid with the oxygen atoms of the uranyl ion at the axial positions. Uranium-containing groups and guanidinium cations are connected by electrostatic interactions and by the hydrogen bond system, which involves hydrogen atoms of guanidinium cations and oxygen atoms of oxalate and acetate anions. The results of the spectroscopic study of the compound agree with the X-ray diffraction data.  相似文献   

17.
The crystal structure of a new monoclinic variety of hydrous rubidium vanadyl phosphate [Rb0.24(H2O)0.76]VO(H2O)(PO4) doped with Al3+ ions is studied by X-ray (R = 0.054) diffraction: a = 6.2655(4) Å, b = 6.2712(3) Å, c = 6.8569(5) Å, β = 107.805(7)°, space group P21/m, Z = 2, and D x = 2.792 g/cm3. The new phase obtained by the hydrothermal synthesis in the V2O5-Rb2CO3-AlPO4-H2O system has a layer-type structure in which Rb atoms and water molecules are located between layers of vertexsharing [VO5(H2O)] octahedra and [PO4] tetrahedra. Rb intercalates based on VOPO4 · 2H2O are described by general formula [Rb x (H2O)1 ? x ]V 1?x V V x IV O(H2O)(PO4), where x ≤ 0.5, and the amount of reduced vanadium and interlayer water molecules is determined by the amount of introduced rubidium atoms.  相似文献   

18.
The title compound, bis[2-[N-(2-chlorophenyl)formimidayl]-1-naphtholato]-(6Cl) copper(II), [Cu(C17H11NOCl)2] (1) was synthesized and its crystal structure was determined. The Compound 1 is monoclinic, space group P2 1/c with a = 9.146(3) Å, b = 18.724(3) Å, c = 16.230(2) Å, β = 96.46(1)°, V = 2761.8(11) Å3, Z = 4, D c = 1.503 g cm?3, μ(Mo Kα) = 1.020 mm?1, R = 0.0606 for 2361 reflections [I > 2σ(I)]. In the title compound, the Cu atom is coordinated by an N2O2 donor set from the imine-phenol ligand in a slightly distorted square planar coordination geometry, with the two phenolate O atoms being deprotonated. The Cu–O bond lengths are 1.878(4) and 1.889(4) Å, the Cu–N bond lengths are 1.980(5) and 1.985(5) Å. The angles O1–Cu–N1 and O2–Cu–N2 are 90.96(19) and 90.72(19)°, respectively.  相似文献   

19.
We have synthesized a multi-ligand chelate copper(II) complex [Cu · (C7H5O3] · (C12H8N2) · H2O1 · (C7H6O3)· NO3, and determined its structure by X-ray diffraction method. The space group of the title compound is P21/a. It is monoclinic, with a = 14.227(4), b = 9.627(4), c = 19.008(7) Å, β = 102.06(3)·, Z = 4. The two salicyclic acid molecules in the cell are in different environments, one inner, the other outer. The geometry around Cu(II) is a four-coordinated distorted plane square. The two coordinating atoms are two nitrogen atoms from phenanthroline, one oxygen atom from salicyclic acid, one oxygen atom from water.  相似文献   

20.
(C3H5N2)2[Cd(C3H4N2)2Nb2O3F8]·2H2O (C3H4N2=imidazole) (1) was prepared from the hydrothermal reaction of Nb2O5, 3CdSO4·8H2O, C3H4N2, HF and H2O at 403 K, and characterized by single crystal X-ray diffraction and IR spectra. 1 crystallizes in the orthorhombic system, space group Pba2, with a=11.0192(9), b=16.8012(14), c=6.8717(6) ?, and Z=2. The crystal is made up of [Cd(C3H4N2)2Nb2O3F8]2− anions, [C3H5N2]+ complex cations and H2O molecules of crystallization. And the backbone of the compound is a one dimension coordination polymeric chain containing the anions. The complex cations and anions are linked through hydrogen bonding interactions. Co-crystallized water molecules fill in the pores and hydrogen bond to the host. Bond valence sums show that O1, O3 and F3 have much more negative charge, which are in agreement with the crystal structure that they act as bridging atoms.Supplementary material CCDC-606794 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at http://www.ccdc.cam.ac.uk/ const/retrieving.html or from the Cambridge Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号