首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Electrochemical oxidative adsorption and reductive desorption of a self-assembled monolayer (SAM) of decanethiol on a Au(111) single crystal electrode were examined in 0.1 M KOH ethanol solution containing various concentrations of decanethiol ranging from 1 muM to 1 mM. Anodic and cathodic current peaks corresponding to the adsorption and desorption of decanethiol, respectively, were observed in cyclic voltammograms of a Au(111) single crystal electrode obtained in 0.1 M KOH ethanol solution containing more than 10 muM of decanethiol. Positions of both peaks depended on the concentration of decanethiol, and they shifted negatively by ca. 0.057 V/decade with increase in decanethiol concentration. This result confirms that the adsorption and desorption of decanethiol is a one-electron process. The reductive charge, which consists of desorption charge and capacitive charge, increased when the sweep rate was decreased and the decanethiol concentration was increased and reached the saturated value of 103 (+/-5%) muC cm-2, which corresponds to the reductive charge of thiol SAM of full coverage with a ( radical3 x radical3)R30 degrees structure. Potentiostatic SAM formation was also investigated by holding the potential at +0.1 V. The reductive charge, i.e., the coverage of the SAM, increased with time and reached the saturated value of 103 (+/-5%) muC cm-2, corresponding to full coverage, after holding the potential at +0.1 V for a certain period of time. The time when the amount of adsorbed thiolate reached full coverage depended on the concentration of decanethiol. The higher the concentration was, the faster full coverage was reached. The desorption peak shifted negatively as the holding time at +0.1 V was increased even after the adsorbed amount had reached full coverage. These results suggest that the ordering of decanethiol SAMs requires a much longer time than the time required for full coverage adsorption. The position of the reductive desorption peak was independent of the thiol concentration if the electrode was kept at +0.1 V for long enough so that a highly ordered SAM was formed. The cathodic peak shifted negatively as the sweep rate was increased, showing that reductive desorption of the SAM was rather slow. The rate constant for the reductive desorption was determined from the potential dependent peak shift to be 0.24 s-1, which is in good agreement with the value obtained for a SAM prepared without potential control, indicating that the quality of the electrochemically prepared SAM is as good as that of the SAM prepared nonelectrochemically.  相似文献   

2.
The adsorption/desorption process of borate was studied at Pt(111) in acidic solution by cyclic voltammetry. A so-called butterfly wave in the cyclic voltammogram of Pt(111) in HClO4 shifted to negative direction upon the addition of boric acid with the disappearance of its sharp spikes. The shift in potential was found to be −57 mV with a tenfold increase of boric acid concentration. This illustrates that this anomalous wave is due to borate adsorption/desorption by a one-electron transfer process. The borate adsorption/desorption wave was observed to shift by −63 mV/pH. At pH>3, the anomalous wave splits forming two separate waves, depending on the pH and the scan rate. The appearance of two waves is assigned to the change in the adsorption mode of borate or the participation of OH in the adsorption process.  相似文献   

3.
Self-assembled monolayers (SAMs) of alkanethiols can undergo reductive desorption and oxidative re-adsorption. The Coulombic efficiency of the oxidative re-adsorption reaction is dependent on the chain length and solution pH. We show that the loss of alkanethiols from the surface after reductive desorption can be explained by a simple model that takes into account diffusion of the thiolate into the bulk solution at a rate that is determined by the bulk solubility. These results provide a quantitative basis for the determination of the loss of alkanethiols from the surface after reductive desorption.  相似文献   

4.
5.
研究了Pt(111)电极在0.1mol/LHClO4溶液中O2吸附与OHad脱附及氧还原反应的动力学.研究发现OHad的可逆吸脱附速率很快;在氧还原的动力学或动力学与传质混合控制区,恒电位下氧还原的电流随反应时间缓慢衰减,在转速较大,扫速较慢的情形下正向扫描过程中氧还原的电流总是明显低于逆向扫描的电流;Pt/0.1mol/LHClO4从无O2切换到O2饱和时,其开路电位迅速从0.9V增加到1.0V.结果表明,Pt(111)电极上O2解离生成OHad速率很快,ORR过程中OHad会在表面缓慢积累,氧还原反应的动力学主要由反应 OHad+H^++e→←H2O的平衡热力学决定.  相似文献   

6.
Electrochemical oxidative formation and reductive desorption processes of a self-assembled monolayer (SAM) of hexanethiol on a Au(111) surface in KOH ethanol solutions containing various concentrations of hexanethiol were investigated by in situ scanning tunneling microscopy in real time. The generation and disappearance of vacancy islands (VIs), corresponding to the formation and desorption of the SAM, respectively, were observed as anodic and cathodic current, respectively, flowed when the thiol concentration was higher than ca. 1 microM. When the VIs disappeared after the reductive desorption of the SAMs, the herringbone structure corresponding to the (radical3 x 23) structure of Au(111), was observed on the surface, indicating that a clean reconstructed surface was exposed even in the hexanethiol ethanol solution. During both oxidative adsorption and reductive desorption of the SAMs, the shape of the steps of the gold substrate changed drastically and the step lines became parallel to the 121 direction of the Au(111) surface, suggesting that gold atoms on the surface were extremely mobile during these processes. The coalescence of adjacent vacancy islands and growth of larger islands triangular in shape accompanied with the disappearance of nearby smaller islands were observed, confirming that the VIs grew according to the Ostward ripening model.  相似文献   

7.
The study of the adsorption/desorption mechanism of phosphate anions at Pt(111) in acidic solution of pH 4.3 and 0.8 was performed by the potential step method in order to reveal the kinetics of anion adsorption. The current-time curve due to phosphate adsorption/desorption showed various decay features, being dependent on the potential region. The rate of current decay depended on pH, being faster in a lower pH solution. Specific adsorption processes were analyzed by the Langmuir and Elovich adsorption equations and also in terms of a two-dimensional nucleation-growth mechanism in different adsorption/desorption regions. In the case of adsorption in 0.3M phosphate buffer solution of pH 4.3, random adsorption without interaction following the Langmuir adsorption, takes place at low coverage, while random adsorption with repulsive force was observed at high coverage. In the desorption process, random desorption with repulsive force takes place at high coverage, and the repulsive force disappears where random adsorption without interaction takes place at medium coverage. When the surface coverage becomes further lower, the desorption mechanism changes dramatically into a two-dimensional nucleation-growth type, suggesting that an ordered adsorbate structure is formed after a rapid discharge process of anion adsorption.  相似文献   

8.
Electrochemical oxidative formation of thiolate monolayers on a Au(111) surface in KOH ethanol solutions of various thiol concentrations is described. The formation process was investigated by electrochemistry, in situ scanning tunneling microscopy (STM), and surface X‐ray diffraction (SXRD). The reductive charge in the linear sweep voltammogram after keeping the potential at +0.1 V increased with holding time and reached the saturated value of 103 µC cm?2, corresponding to the full monolayer coverage of the ( ) structure. The desorption peak shifted negatively with holding time even after the monolayer was formed, suggesting that ordering of the monolayer requires a much longer time than full coverage adsorption. The herringbone structure, corresponding to the ( × 23) structure, was observed on the Au(111) surface in KOH ethanol solution by in situ STM, which shows that a clean surface was exposed. When hexanethiol ethanol solution was added into the ethanol solution at ?450 mV so that the final thiol concentration was higher than ca. 5 µM, generation of vacancy islands (VIs) was observed, which shows the potentiostatic monolayer formation. When the potential was scanned positively from ?950 mV where a clean reconstructed Au(111) surface was exposed, generation of VIs was observed accompanied by anodic current flow. During both oxidative adsorption and reductive desorption of the monolayer, the shape of the steps of the gold surface changed drastically, which suggests that the gold atoms on the surface are extremely mobile during the monolayer formation. SXRD measurement confirmed the surface reconstruction lifting upon monolayer formation. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 199–209; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900002  相似文献   

9.
The interfacial structures of Ag bilayer prepared by underpotential deposition on Au(111) (Ag(2ML)/Au(111)) were determined by ex situ scanning tunneling microscopy and in situ surface X-ray scattering measurements before and after oxidative adsorption and after reductive desorption of a self-assembled monolayer (SAM) of hexanethiol (C6SH) in alkaline ethanol solution. While no structural change was observed after oxidative formation of C6SH SAM on the Ag(2ML)/Au(111) in an ethanol solution containing 20 mM KOH and 0.1 mM C6SH, some of the Ag atoms in the bilayer were stripped when the SAM was reductively desorbed. Dedicated to Professor J. O’M. Bockris on the occasion of his 85th birthday.  相似文献   

10.
Electrochemical quartz crystal nanobalance (EQCN) is one of the most powerful tools to obtain information on the events occurring at the electrode surface. This method has been exploited to monitor the surface mass changes and hence to draw conclusions in respect of the formation and removal of adsorbed species and oxides as well as changes in the electrochemical double layer also in the case of platinum electrodes. However, the results that had been obtained so far are somewhat contradictory, and consequently diverse interpretations can be found in the literature. Therefore, it is worth to review the knowledge accumulated and to carry out systematic study in this respect. In this work smooth and platinized platinum electrodes in contact with acidic solutions were studied using EQCN technique. The effects of temperature, the nature of cations and anions, pH, concentrations, potential range were investigated on the electrochemical, and the simultaneously detected nanogravimetric responses. It is shown that in the underpotential deposition (upd) of hydrogen the adsorption/desorption of species from the solution phase is governed by the oxidative desorption/reductive adsorption of hydrogen; however, unambiguos conclusions cannot be drawn regarding the actual participation of anions and water molecules in the surface coverage. In the hydrogen evolution region a weak cation adsorption can be assumed and the potential of zero charge can be estimated. Cs+ cations affect the EQCN response in the hydrogen upd region. In some cases, e.g., in the case of upd of zinc the mass change can be explained by an induced anion adsorption. Two types of dissolution processes have been observed. A platinum loss was detected during the reduction of platinum oxide, the extent of which depends on the positive potential limit and the scan rate, and to a lesser extent on the temperature. The platinum dissolution during the electroreduction of oxide is related to the interfacial place exchange of the oxygen and platinum atoms in the oxide region. At elevated temperatures two competitive processes take place at high positive potentials: a dissolution of platinum and platinum oxide formation.  相似文献   

11.
In formation of binary self-assembled monolayers (SAMs) composed of 2-aminoethanethiol (AET) and 2-mercaptoethane sulfonic acid (MES) by adsorption from an ethanol solution on Au(111), the adsorption shows nearly ideal nonideality in that the surface ratio of MES to AET in the SAM is unity and does not depend on the mixing ratio of MES to AET in the bathing ethanol solution used for preparing SAMs, chi(soln)MES, over the wide range of chi(soln)MES between 0.01 and 0.95. X-ray photoelectron spectroscopy confirms that at least 80% of AET molecules adsorbed are protonated in this range of chi(soln)MES, indicating that the electrostatic interaction between positively charged AET and negatively charged MES is responsible to the observed nonideality. Correspondingly, there appears only one cathodic peak in a linear-sweep voltammogram of the reductive desorption of the SAM, having a narrow full width at half-maximum of about 20 mV. This suggests the presence of strong lateral attractive interaction between the adsorbed thiolates.  相似文献   

12.
研究了717型阴离子交换树脂对苯酚、苯甲酸和十二烷基苯磺酸钠(SDBS)等水溶性芳香族污染物吸附过程的基本化学问题.研究结果表明:717型树脂对苯酚、苯甲酸和SDBS的吸附过程均符合Lagergren二级吸附动力学方程,吸附速率均随着温度的升高而加快,吸附表观活化能Ea分别为13.2kJ/mol、59.5kJ/mol和48.1kJ/mol,吸附过程△H0和△S0均为正值,△G0均为负值,吸附能够自发进行;吸附等温模型符合Langmuir等温式;318K时,717型树脂在pH=9.1对SDBS的饱和吸附容量为360mg/g;在pH=10.2,对苯酚和苯甲酸的饱和吸附容量分别为194mg/g和286mg/g.用浓度均为0.5mol/L,体积比为5∶1的NaCl-NaOH混合溶液可快速洗脱树脂上吸附的污染物,洗脱率达98%以上.该树脂对水溶性芳香族污染物吸附容量大,易于再生和循环利用,可用于环境水体中水溶性芳香族有机污染物的吸附治理.  相似文献   

13.
The metal anions of vanadium (V) and chromium (VI) in aqueous solution can be effectively adsorbed by Zr(IV)-impregnated collagen fiber (ZrICF). The maximum adsorption capacity of V(V) takes place within the pH range of 5.0 to 8.0, while that of Cr(VI) is within the pH range of 6.0 to 9.0. When the initial concentration of metal ions was 2.00 mmol L−1 and the temperature was 303 K, the adsorption capacity of V(V) on Zr-ICF was 1.92 mmol g−1 at pH 5.0, and the adsorption capacity of Cr(VI) was 0.53 mmol g−1 at pH 7.0. As temperature increased, the adsorption capacity of V(V) increased, while that of Cr(VI) was almost unchanged. The adsorption isotherms of the anionic species of V(V) and Cr(VI) can be fit by the Langmuir equation. The adsorption rate of V(V) follows the pseudo-first-order rate model, while the adsorption rate of Cr(VI) follows the pseudo-second-order rate model. Furthermore, ZrICF shows high adsorption selectivity to V(V) in the mixture solution of V(V) and Cr(VI). Practical applications of ZrICF could be expected in consideration of its performance in adsorption of V(V) and Cr(VI).  相似文献   

14.
腐植酸对砷的吸附作用研究   总被引:4,自引:0,他引:4  
腐植酸中含有大量的极性基团,对金属离子有较强的吸附性能。运用氢化物-原子荧光光谱法,以泥炭腐植酸为原料,研究了腐植酸对砷(V)离子的吸附作用和腐植酸吸附剂中砷的回收,并得出了最佳的吸附和脱附条件。实验考察了酸度、时间分别对吸附和脱附的影响。结果表明,泥炭腐植酸对砷吸附的最佳模型为Freundlich吸附方程,当溶液成中性时腐植酸对砷的吸附量较大且趋于平稳。砷的浓度为1μg/mL,溶液的pH值为7,吸附时间控制在55min时,吸附效果最佳,最大吸附率为85.49%。脱附的最佳条件为:pH值14,脱附时间20min。  相似文献   

15.
The reductive and oxidative desorption of a BODIPY labeled alkylthiol self-assembled monolayer (SAM) on Au was studied using electrochemical methods coupled with fluorescence microscopy and image analysis procedures to monitor the removal of the adsorbed layer. Two SAMs were formed using two lengths of the alkyl chain (C10 and C16). The BODIPY fluorescent moiety used is known to form dimers which through donor-acceptor energy transfer results in red-shifted fluorescence. Fluorescence from the monomer and dimer were used to study the nature of the desorbed molecules during cyclic step changes in potential. The reductive desorption was observed to occur over a small potential window (0.15 V) signified by an increase in capacitance and in fluorescence. Oxidative readsorption was also observed through a decrease in capacitance and a lack of total removal of the fluorescent layer. Removal by oxidative desorption occurred at positive potentials over a broad potential range near the oxidation of the bare Au. The resulting fluorescence showed that the desorbed molecules remained near the electrode surface and were not dispersed over the 20 s waiting time. The rate of change of the fluorescence for oxidative desorption was much slower than the reductive desorption. Comparing monomer and dimer fluorescence intensities indicated that the dimer was formed on the Au surface and desorbed as a dimer, rather than forming from desorbed monomers near the electrode surface. The dimer fluorescence can only be observed through energy transfer from the excited monomer suggesting that the monomers and dimers must be in close proximity in aggregates near the electrode. The fluorescence yield for longer alkyl chain was always lower presumably due to its decreased solubility in the interfacial region resulting in a more efficient fluorescence quenching. The oxidative desorption process results in a significantly etched or roughened electrode surface suggesting the coupling of thiol oxidative removal and Au oxide formation which results in the removal of Au from the electrode.  相似文献   

16.
改性羽毛对锌离子的吸附   总被引:1,自引:0,他引:1  
使用单宁酸对禽类羽毛进行化学改性.研究了改性前后羽毛对金属锌离子的吸附及解吸性能,探讨了羽毛上单宁酸负载量,锌盐溶液的pH值等因素对羽毛金属离子吸附性能的影响.结果表明,经单宁酸化学改性的羽毛在碱性环境下能明显增加对金属锌离子的吸附,此时对应Zn2 的最大吸附量为O.97mmol/g,而未改性羽毛在相同条件下的最大吸附量为0.64mmol/g.在酸性环境中,改性羽毛中金属锌离子的解吸附率为16.8%,未改性羽毛的锌离子解吸附率为64.0%,表明改性羽毛的金属复合物具有较高的稳定性.羽毛作为一种廉价的重金属吸附材料,对整治环境污染具有应用前景.  相似文献   

17.
The reductive desorption of a self-assembled monolayer (SAM) of a fluorescent thiol molecule (BodipyC10SH) from Au was characterized using electrochemistry and epi-fluorescence microscopy. Molecular luminescence is quenched near a metal surface, so fluorescence was only observed for molecules reductively desorbed and then separated from the electrode surface. Fluorescence imaging showed that reductive desorption was selective, with desorption occurring from different regions of the Au electrode depending on the extent of the negative potential excursion. When desorbed, the molecules were sufficiently mobile, diffusing away from the electrode surface, thereby preventing oxidative readsorption. At sufficiently negative desorption potentials, all of the thiol was desorbed from the electrode surface, resulting in fluorescence at the air/solution interface. The selective removal of the thiol monolayer from distinct regions was correlated to features on the electrode surface and was explained through potential-dependent interfacial energies. This in situ electrofluorescence microscopy technique may be useful in sensor development.  相似文献   

18.
The electrochemical oxidation of formaldehyde over graphene surfaces modified with Pt–Ru co-catalyst is presented. Graphene was chemically converted from graphite and Pt–Ru co-catalyst was electrochemically deposited using cyclic voltammetry. The hybrid surface is prepared using “green approaches” and displayed electrocatalytic activity towards formaldehyde in the form of current oscillations. The current oscillations that were mainly due to adsorption/desorption of carbonaceous oxidative products are a factor of several parameters such as the concentrations of both formaldehyde and supporting electrolyte in solution, the amount of catalyst loading, scan rate of potential, upper potential limit, and the temperature change. CCG/Pt–Ru exhibited higher electrocatalytic activity toward formaldehyde electro-oxidation, and intense electrochemical current oscillations were obtained at relatively low HCHO concentrations compared to other work mentioned in literature for CCG/Pt–Pd.  相似文献   

19.
Dimethylarsinic acid (DMA) is an organoarsenical compound that, along with monomethylarsonic acid, poses a health and an environmental risk, and a challenge to the energy industry. Little is known about the surface chemistry of DMA at the molecular level with materials relevant to geochemical environments and industrial sectors. We report herein the first in situ and surface-sensitive rapid kinetic studies on the adsorption and desorption of DMA to/from hematite and goethite at pH 7 and I = 0.01 M KCl using ATR-FTIR. Values for the apparent rates of adsorption and desorption were extracted from experimental data as a function of spectral components, flow rate of the aqueous phase, film thickness of hematite, and using chloride and hydrogen phosphate as desorbing agents. The adsorption kinetic data show fast and slow rates, consistent with the formation of more than one type of adsorbed DMA. Apparent adsorption and desorption rate constants were extracted from the dependency of the initial adsorption rates on [DMA(aq)]. Desorption rate constants were also extracted from desorption experiments using hydrogen phosphate and chloride solutions, and were found to be higher by 1-2 orders of magnitude than those using chloride. In light of the complex ligand exchange reaction mechanism of DMA desorption by phosphate species at pH 7, apparent desorption rate constants were found to depend on [hydrogen phosphate] with an order of 0.3. The impact of our studies on the environmental fate of DMA in geochemical environments, and the design of technologies to reduce arsenic content in fuels is discussed.  相似文献   

20.
氨基葡聚糖对水溶液中铜离子的吸附与脱附   总被引:4,自引:0,他引:4  
自虾、蟹壳等水产加工废料中提取的甲壳质,经脱乙酰基反应,可得氨基葡聚糖,单体结构可表示为左图。该碱性多糖无毒,不溶于水及碱性溶液,在pH~4.5的稀酸中会溶涨,酸性更强时可溶解并成盐。若要求该聚合物以稳定的固态存在于水中,介质的酸性只允许在很小的范围内变化。聚糖中的氨基与过渡金属离子有良好的螯合作用,可作为固体吸附剂吸附水中微量的有害重金属离子。据文献报导,这类吸附大多呈Langmuir型,但Pb(Ⅱ)与Cr(Ⅲ)是例外,它们的吸附等温线表现出单层吸附饱和后,又呈现多层吸附的特征。扫描电镜的照片表明聚糖吸附Pb(Ⅱ)、Cr(Ⅲ)后,表面有瘤状小结节生成。溶液pH升高有利于重  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号