首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New potential bluish‐green electroluminescent materials of 1,3,4‐oxadiazole–triazolopyridin‐ one–carbazole derivatives were synthesized and characterized for single‐layer devices. Carbazole, pyridine, and triazolopyridinone were completely introduced into 1,3,4‐oxadiazole skeletal to play assistant roles in controlling fundamental photolytic process due to the electron‐donating nature, excellent photoconductivity, and flexible structure properties. Following the spectroscopic studies and the measurements of cyclic voltammogram, 1,3,4‐oxadiazole–triazolopyridinone–carbazole derivatives were highly efficient bluish‐green electroluminescent materials. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:160–165, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20201  相似文献   

2.
Recently, New functionalized oxadiazole‐triazolopyridinone hybrid compounds were investigated as photoluminescent materials. In this work, we introduce triazolopyridinone to synthesize a series of oxadiazole‐triazolopyridinone hybrid derivatives as potential photoluminescent materials and explore the effect of modification of the triazolopyridinone moiety. The λmax values of the photoluminescence (PL) spectra of 1,3,4‐oxadiazole‐triazolopyridinone hybrids are promoted to longer wavelengths (470‐486 nm) than the traditional 1,2,3‐triazole derivatives (410‐425 nm) in solutions. PL spectra 5a, 5d , and 5g of the vacuum evaporated films on quartz substrates, with a maximum at 487 nm, shows a red‐shift (~15‐20 nm), with respect to the solution spectrum. The solution fluorescence quantum yields (Φf) were measured, all of which fell into the range 0.65‐0.76, and were determined relative to that of 2‐phenyl‐5‐(4‐biphenyl)‐1,3,4‐oxadiazole in benzene (Φf = 0.80). 1,3,4‐Oxadiazole‐triazolopyridinone hybrid derivatives show clearly non‐reversible reduction processes in cyclic voltammogram measurements. Following spectroscopic studies and observation of the electrochemical behaviors, 1,3,4‐oxadiazole‐triazolopyridinone derivatives were determined to be potential efficient bluegreenish photoluminescent materials.  相似文献   

3.
The synthesis of potential fluorescent active 4‐(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)phenylhydrazine derivatives was accomplished in three steps. The key step was the dehydration cyclization of 1,2‐diacylhydrazines to form the 1,3,4‐oxadiazole ring by use of acetic anhydride/perchloric acid mixture as the dehydrating agent. The sydnone moiety served as the masked hydrazines, which could be demasked by HCl for further application. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:438–442, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20318  相似文献   

4.
New benzenesulfonamides, most of which are chiral, incorporating 1,3,4‐oxadiazole, and selected amino acid entities have been synthesized, using the microwave irradiation method. Most of the synthesized compounds were tested against HIV activity. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:425–431, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20316  相似文献   

5.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

6.
Treatment of 3‐(3‐methylbenzofuran‐2‐yl)‐3‐oxopropanenitrile ( 1 ) with phenyl isothiocyanate afforded the thioacetanilide derivative 3 , which when reacted with α‐haloketones, α‐halodiketones, and hydrazonoyl chlorides gives thiophene, 1,3‐oxathiole, and 1,3,4‐thiadiazole derivatives 6a,b, 10a,b and 14a–g , respectively. Treatment of 3‐methyl‐2‐benzofurancarboxylic acid hydrazide ( 15 ) with benzaldehyde followed by bromine afforded the 1,3,4‐oxadiazole derivative 18 . Treatment of the acid hydrazide 15 with phenyl isothiocyanate gave the thiosemicarbazide 20 . Compound 20 could be converted into 1,3,4‐oxadiazole, 1,2,4‐triazole‐3‐thione, and 1,3,4‐thiadiazole derivatives 21, 22 , and 23 , respectively. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:294–300, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20298  相似文献   

7.
New electroluminescent materials of 1,3,4‐oxadiazole–1,2,3‐triazole and 1,3,4‐oxadiazole–1,2,3‐triazole–pyridine hybrid derivatives were synthesized and characterized. Following spectroscopic studies and characterization of their electronic properties, 1,3,4‐oxadiazole–1,2,3‐triazole hybrids and 1,3,4‐oxadiazole–1,2,3‐triazole–pyridine derivatives were found to be potentially efficient blue electroluminescent materials. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:322–328, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20210  相似文献   

8.
The preparation of triarylamine N‐functionalized 3,6‐linked carbazole homopolymers as well as alternating copolymers with 2,5‐diphenyl‐[1,3,4]oxadiazole and benzo[1,2,5]thiadiazole was undertaken using Suzuki cross‐coupling polymerization procedures associating 3,6‐bis(4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolan‐2‐yl)‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole and, respectively, 3,6‐dibromo‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole, 2,5‐bis(4‐bromo‐phenyl)‐[1, 3,4]oxadiazole, and 4,7‐dibromo‐benzo[1,2,5]thiadiazole. Both the carbazole homopolymer and alternating copolymer with 2,5‐diphenyl‐[1,3,4]oxadiazole were found as wideband gap materials emitting in the blue part of the electromagnetic spectrum while the carbazole alternating copolymer with 4,7‐benzo[1,2,5]thiadiazole had a narrower band gap and emitted in the orange part of the electromagnetic spectrum. The new polymers are thermally stable up to 300 °C. A discussion of the electrochemical and optical properties of the new polymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5957–5967, 2007.  相似文献   

9.
A series of new organosoluble poly(amine hydrazide)s were synthesized via the Yamazaki phosphorylation reaction and were solution‐cast into transparent films. Differential scanning calorimetry indicated that the hydrazide polymers could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s exhibited glass‐transition temperatures in the range of 276–297 °C, 10% weight loss temperatures in excess of 520 °C, and char yields at 800 °C in nitrogen higher than 67%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of these polymers prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidative redox couples at 1.10–1.19 and 1.35–1.60 V versus Ag/AgCl in an acetonitrile solution, respectively. The poly(amine hydrazide)s revealed excellent stability of the electrochromic characteristics, changing color from the original pale yellow to green and then to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 48–58, 2007  相似文献   

10.
The cross‐shaped p–n diblock oligomers based on oligothiophenes (OTs) and 1,3,4‐oxadiazole (OXD) were synthesized and investigated regarding optical properties, electrochemistry, quantum chemical calculations, and intramolecular energy transfer. Since only one emission peak is observed in PL spectra of the oligomers, it is evidenced that effective energy transfer from the OXD to OTs branch. The electrochemical experiments show that almost complete spatial separation of HOMO and LUMO with the thiophene number increasing. The theoretical calculations were carried out regarding which conformer is the lowest in energy, the torsion angle between thiophene/oxadiazole and the central benzene ring, and electron densities distributions of the oligomers. Based on all data, a model for intramolecular energy‐transfer process has been put forward to explain the optical properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1066–1073, 2007  相似文献   

11.
The iminium intermediate formed by the reaction of a secondary amine with acetaldehyde was reacted by (N‐isocyanimino) triphenylphosphorane in the presence of an electron‐poor (E)‐cinnamic acid derivative to give the corresponding iminophosphorane intermediate, whose intramolecular the aza‐Wittig reaction led to disubstituted 1,3,4‐oxadiazole derivatives. The reactions were completed under neutral conditions at room temperature, and the corresponding disubstituted 1,3,4‐oxadiazole derivatives were produced in excellent yields. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:79–84, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20660  相似文献   

12.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

13.
4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxylic acid and 4,4′‐(methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxamide have been synthesized by the acid‐catalyzed condensation of 4‐amino‐1,2,5‐oxadiazole‐3‐carboxylic acid and 4‐amino‐1,2,5‐oxadiazole‐3‐carboxamide with formaldehyde. The crystal and molecular structures of the compounds have been determined by X‐ray crystallography. 4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxylic acid crystallizes in space group C2/c, and its measured density is 1.800 g/mL, significantly above the calculated value of 1.68 g/mL. 4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxamide crystallizes in space group P21/c, and its measured density is 1.623 g/mL, in close agreement with the calculated value of 1.64 g/mL. The structure of the starting amide 4‐amino‐1,2,5‐oxadiazole‐3‐carboxamide has also been determined. These data, combined with literature data, suggest that ortho‐aminocarboxylic acids have unusually high densities, but the reasons for this are unclear.  相似文献   

14.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

15.
Three families of fluorene–oxadiazole‐based polymers with confinement moieties have successfully been prepared by the two‐step method for polyoxadiazole synthesis. These polymers show good solubility in common organic solvents, high thermal stability, and strong violet and blue photoluminescence in solution and as films, respectively. Their low‐lying highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels originate from the electron deficiency of an oxadiazole moiety, and this suggests that they may be useful for blue‐emitting and electron‐transport/hole‐blocking layers in electroluminescent devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 674–683, 2003  相似文献   

16.
Two novel high‐molecular weight functional polyacetylenes (PA) bearing oxadiazole group as a pendant, poly(2‐(4‐octoxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P1 ) and poly(2‐(4′‐octoxyphenyl)‐5‐(4′‐propynyloxyphenyl)‐1,3,4‐oxadiazole) ( P2 ) were synthesized by [Rh(nbd)Cl]2‐Et3N catalysts. Both polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with FTIR, NMR, UV, thermogravimetric analysis, GPC, optical‐limiting and nonlinear optical analyses, respectively. The results show that linkage of oxadiazole chromophore to PA main chain has improved the nonlinear optical (NLO) property of PA, and endowed PA with novel optical limiting properties and enhanced thermal stability. Simultaneously, the optical‐limiting and NLO properties of the polymers were sensitive to their molecular structures. P1 with oxadiazole directly incorporated into PA main chain as a pendant showed better performances and larger third‐order nonlinear optical susceptibility than P2 with oxadiazole incorporated into PA main chain via a spacer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2072–2083, 2008  相似文献   

17.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

18.
Four D–A–D type co‐oligomers have been synthesized by Stille condensation between monostannyl derivatives of furan/thiophene/selenophene/3,4‐ethylenedioxythiophene (EDOT) and 4,7‐dibromo‐benzo[1,2,5]oxadiazole. All these co‐oligomers were successfully electrochemically polymerized in dichloromethane and characterized by spectroelectrochemistry. All four polymers possess narrow optical band gap. Spectroelectrochemical studies of polymer films on indium tin oxide revealed that the replacement of donor EDOT with furan/thiophene/selenophene has affected the low‐energy charge‐carrier (bipolaron) formation significantly. Kinetic studies based on chronoamperometry show that the polymer P5 (EDOT‐capped benzo[1,2,5]oxadiazole system) possess better electrochromic property with high transmittance (66%) in visible region than the other copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The reaction of (E)‐3‐aryl‐2‐propenoic acid derivatives with (N‐isocyanimino) triphenylphosphorane proceeds smoothly at room temperature to afford the corresponding 2‐[(E)‐2‐aryl‐1‐ethenyl]‐1,3,4‐oxadiazole via an intramolecular aza‐Wittig reaction in good yields under neutral conditions. The structures of the products were deduced from their IR, 1H NMR, and 13C NMR spectra and mass spectrometry. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:612–616, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20701  相似文献   

20.
Reactions of (N‐isocyanimino) triphenylphosphorane with 2‐oxopropylbenzoate (or acetate) in the presence of aromatic carboxylic acids and primary amines proceed smoothly at room temperature and in neutral conditions to afford sterically congested 1,3,4‐oxadiazole derivatives in high yields. The reaction proceeds smoothly and cleanly under mild conditions, and no side reactions were observed. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:692–698, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20735  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号